Introduction to Equivalences of Categories

Forschungsseminar: Aspects of Noncommutative Geometry

Areeb S.M.
$16^{\text {th }}$ March 2023

Categories

Definition

The data of a category \mathcal{C} is that of

- A collection of objects, denoted \mathcal{C}_{0} or ob \mathcal{C}.
- A collection of arrows or morphisms, denoted \mathcal{C}_{1} or $\operatorname{Arr} \mathcal{C}$. To each arrow of \mathcal{C} are associated two objects of \mathcal{C}, a source and a target.
- A composition operation \circ, determining for each pair of arrows $X \xrightarrow{f} Y$ and $Y \xrightarrow{g} Z$ a composite $g \circ f: X \rightarrow Z$. This is required to satisfy the following properties.
- Associativity: For all triples of arrows $A \xrightarrow{f} B, B \xrightarrow{g} C, C \xrightarrow{h} D$,

$$
h \circ(g \circ f)=(h \circ g) \circ f
$$

- Unitality: For every object X, there is an identity arrow 1_{X} or id_{X} such that for arbitrary $W \xrightarrow{f} X$ and $X \xrightarrow{g} Y$ we have the equations

$$
1_{x} \circ f=f \quad g \circ 1_{x}=g
$$

Some examples of categories

Examples

Some examples of categories in the spirit that we have motivated them are

- There is the category Set of sets (the objects) and functions (the arrows) between them.
- There is the category Top of topological spaces and continuous maps between them.
- There is a category Meas of measurable spaces and measurable functions.
- There is the category Grp of groups and group homomorphisms.
- There is the category Vect_{k} of vector spaces over a field k and linear maps.
- There is a category Ring of (unital) rings and (unital) ring homomorphisms between them.
We will see more such examples in the following talks.

Subcategories

Definition

- A subcategory of a category \mathcal{C} is a category defined by a subcollection of objects of \mathcal{C}, and a subcollection of arrows of \mathcal{C} between these objects containing the respective identities, such that the composition operation of \mathcal{C} restricts to one of this new category.
- A subcategory of \mathcal{C} is full when its arrows are all arrows of \mathcal{C} between its objects.

Examples

Example

There are full subcategories of interest of all the examples above. For instance,

- There is the subcategory FinSet of Set given by finite sets and functions between them.
- There is the subcategory CHaus of Top given by the compact Hausdorff spaces.
- There is the subcategory of $\mathrm{Vect}_{k}^{\mathrm{fg}}$ of Vect_{k} of finitely generated vector spaces over a field k and linear maps.

Edge case: Monoids

Example

- Recall that a monoid M is a set (abusively denoted M as well) with an associative binary operation $M \times M \rightarrow M$ such that there is a unit element e for this operation.
- This can be seen as a category with one object, where the arrows are the elements of M (with source and target the unique object). The composition operation is just the multiplication operation of the monoid.

Edge case: Preorders

Example

- Recall that a preorder is a set with a binary operation \leq that is reflexive and transitive.
- A preorder can equivalently be represented as a category whose objects are the elements of the preorder, and a unique morphism $X \rightarrow Y$ when $X \leq Y$.
- An elegant example of price providing such a preorder relation can be found in [Per19, Example 1.1.4], and similar examples can be constructed when one deals with objects that are inputs to a kind of "height function" (for the same reason).

Finite totally ordered sets

Notation

- As a particularly useful class of preorder categories, we will denote for $n \in \mathbb{N}$ the finite totally ordered set

$$
[n]:=\{0<1<\ldots<n\}
$$

- They have the particularly evocative depiction

$$
0 \rightarrow 1 \rightarrow \cdots \rightarrow n
$$

Isomorphisms

Definition

We call an arrow $f: X \rightarrow Y$ of a category \mathcal{C} an isomorphism if it is invertible, i.e. if there is an arrow $g: Y \rightarrow X$ such that both $f \circ g$ and $g \circ f$ are the respective identities.

Example

- The invertible arrows in Set are the bijections.
- In many "algebraic" categories as well, invertibility and bijectivity imply each other (group/ring homomorphisms, linear maps, etc).
- However in the case of Top or Meas, this is not the case, as one would for instance require the inverses to be continuous or measurable as well.

Example

- Thinking of a monoid as a category, we see that the invertible elements of the monoid correspond to the invertible arrows.
- Thus for instance, a monoid is a group if and only if every arrow of the corresponding category is invertible.

Example

- In a preorder, two objects are isomorphic if and only if there are morphisms in both ways between them.
- Consequently two objects X, Y are isomorphic if and only if $X \leq Y$ and $Y \leq X$.

Functors

Definition

A functor $\mathcal{F}: \mathcal{C} \rightarrow \mathcal{D}$ from a category \mathcal{C} to \mathcal{D} is the data of

- An assignment on objects ob $\mathcal{C} \rightarrow$ ob \mathcal{D}
- For each pair of objects X, Y an assignment on morphisms

$$
\mathcal{F}:=\mathcal{F}_{X, Y}: \mathcal{C}(X, Y) \rightarrow \mathcal{D}(\mathcal{F} X, \mathcal{F} Y)
$$

such that

- \mathcal{F} takes identities to identities.
- For composable $X \xrightarrow{f} Y \xrightarrow{g} Z$ in \mathcal{C},

$$
\mathcal{F}(g \circ f)=\mathcal{F}(g) \circ \mathcal{F}(f)
$$

Examples of functors

Example

- Functors between monoids and preorder categories are monoid homomorphisms and order preserving maps respectively.
- For all of our prototypical examples, there are forgetful functors to Set, which extract the underlying set and underlying function from the objects and morphisms respectively.
- The formation of the free group/vector space/polynomial ring on a set define functors out of Set, as given a function from one set to another, one can associate to it the unique arrow between free objects that acts as the given function on generators.

Example

For a category \mathcal{C}, the data of a functor $[0] \rightarrow \mathcal{C}$ corresponds to the datum of an object of \mathcal{C}. Similarly, a functor [1] $\rightarrow \mathcal{C}$ amounts to picking out an arrow of \mathcal{C}.

Example

- Thinking of a group G as a one object category, a functor $G \rightarrow$ Set is determined by a set X and a group homomorphism $G \rightarrow$ Aut $_{\text {set }}(X)$.
- In other words, a functor from a group to Set is the data of an action of the group on a set.
- One obtains analogues of this correspondence on replacing Set with other categories, for instance functors to Top produce continuous group actions, and functors to Vect $_{k}$ produce representations.

Definition

- Consider functors $\mathcal{F}, \mathcal{G}: \mathcal{C} \rightarrow \mathcal{D}$. A natural transformation $\mathcal{F} \rightarrow \mathcal{G}$ is the data of a functor

$$
\mathcal{H}:[1] \times \mathcal{C} \rightarrow \mathcal{D}
$$

such that the restriction of \mathcal{H} to $\{0\} \times \mathcal{C}$ is \mathcal{F} and its restriction to $\{1\} \times \mathcal{C}$ is \mathcal{G}.

- Unpacking this definition, a natural transformation $\mathcal{H}: \mathcal{F} \rightarrow \mathcal{G}$ is the data of an arrow $\mathcal{H}_{c}: \mathcal{F}(c) \rightarrow \mathcal{G}(c)$ of \mathcal{D} for each object c of \mathcal{C} such that, for each arrow $u: x \rightarrow y$ of \mathcal{C}, the following square in \mathcal{D} commutes

$$
\begin{array}{lll}
\mathcal{F}(x) & \stackrel{\mathcal{F}(u)}{\longrightarrow} \mathcal{F}(y) \\
\mathcal{H}_{x} \downarrow & \downarrow^{\prime} \\
\mathcal{G}(x) \underset{\mathcal{G}(u)}{\longrightarrow} & \mathcal{G}(y)
\end{array}
$$

- The arrow \mathcal{H}_{c} is called the component of \mathcal{H} at c.

Examples of natural transformations

Example

- Thinking of a group as a one object category, and functors $G \rightarrow$ Set as G-sets, a natural transformation is a G-equivariant maps.
- Similarly, natural transformations between similar functors, say to topological spaces, or vector spaces are the corresponding notions of G-equivariant maps.
- On the other hand, given order preserving preorder maps $\mathcal{F}, \mathcal{G}: \mathcal{C} \rightarrow \mathcal{D}$, a natural transformation (and there can be at most one from a given preorder map to another) $\mathcal{F} \rightarrow \mathcal{G}$ expresses the fact that $\mathcal{F} \leq \mathcal{G}$ (objectwise).

Construction

Consider functors $\mathcal{F}, \mathcal{G}, \mathcal{H}: \mathcal{C} \rightarrow \mathcal{D}$, and natural transformations $\alpha: \mathcal{F} \rightarrow \mathcal{G}$ and $\beta: \mathcal{G} \rightarrow \mathcal{H}$. The (vertical) composition $\beta \circ \alpha: \mathcal{F} \rightarrow \mathcal{H}$ is the natural transformation whose component at an object c is

$$
(\beta \circ \alpha)_{c}:=\beta_{c} \circ \alpha_{c}
$$

Natural Equivalences

Definition

Given functors $\mathcal{F}, \mathcal{G}: \mathcal{C} \rightarrow \mathcal{D}$, a natural equivalence is a natural transformation $\alpha: \mathcal{F} \rightarrow \mathcal{G}$ that has an inverse under vertical composition.

Observation

Given functors $\mathcal{F}, \mathcal{G}: \mathcal{C} \rightarrow \mathcal{D}$ and a natural transformation $\alpha: \mathcal{F} \rightarrow \mathcal{G}, \alpha$ is a natural equivalence if and only if each component $\alpha_{c}: \mathcal{F}(c) \rightarrow \mathcal{G}(c)$ is invertible (in \mathcal{D}).

Equivalences of Categories

Definition

- An equivalence of categories is a functor $\mathcal{F}: \mathcal{C} \rightarrow \mathcal{D}$ such that there exists a functor $\mathcal{G}: \mathcal{D} \rightarrow \mathcal{C}$, as well as natural equivalences $1_{\mathcal{C}} \cong \mathcal{G} \circ \mathcal{F}$, and $\mathcal{F} \circ \mathcal{G} \cong 1_{\mathcal{D}}$.
- In such a scenario one calls \mathcal{G} a pseudo-inverse to \mathcal{F}.
- We will denote equivalences of categories as $\mathcal{F}: \mathcal{C} \xrightarrow{\sim} \mathcal{D}$, and in such a scenario write $\mathcal{C} \simeq \mathcal{D}$.

Proposition

One can in fact show that pseudo-inverses of an equivalence are themselves unique up to natural equivalence.

Fully faithful and essentially surjective functors

Definition

Consider categories \mathcal{C}, \mathcal{D}, and a functor $\mathcal{F}: \mathcal{C} \rightarrow \mathcal{D}$.

- We say that \mathcal{F} is faithful if for objects X, Y of \mathcal{C}, the induced

$$
\mathcal{C}(X, Y) \rightarrow \mathcal{D}(\mathcal{F}(X), \mathcal{F}(Y))
$$

is injective.

- We say that \mathcal{F} is full if for objects X, Y of \mathcal{C}, the induced

$$
\mathcal{C}(X, Y) \rightarrow \mathcal{D}(\mathcal{F}(X), \mathcal{F}(Y))
$$

is surjective.

- We say that \mathcal{F} is fully-faithful if it is both full and faithful.
- We say that \mathcal{F} is essentially surjective if every object Y of \mathcal{D} is isomorphic to $\mathcal{F}(X)$ for an object X of \mathcal{C}.

Characterizing equivalences

Proposition

Consider categories \mathcal{C}, \mathcal{D}, and a functor $\mathcal{F}: \mathcal{C} \rightarrow \mathcal{D}$. Then, \mathcal{F} is an equivalence if and only if it is fully-faithful and essentially surjective.

An application of the preceding criterion

Example

- For a field k, let Mat be the category with objects the k-vector spaces k^{n} for each $n \geq 0$. The arrows $k^{m} \rightarrow k^{n}$ are given by $n \times m$ matrices, and composition by matrix multiplication.
- Now, k^{n} has a canonical basis, and thinking of such a matrix as encoding the action of a linear map on this basis we get a functor Mat \rightarrow Vect $_{k}^{\mathrm{fg}}$.
- From classic linear algebra one knows that the information of how a linear map is characterised by its action on a basis is precisely given by a matrix as such. Thus one fully-faithfulness.
- Additionally, essential surjectivity is reflected as the fact that every vector space has a basis (which of course, we have assumed to be finite). Thus in particular this functor is an equivalence.
- Somewhat interesting is the fact that we do not have a canonical explicit pseudo-inverse to Mat \rightarrow Vect ${ }_{k}^{\mathrm{fg}}$. This can be seen as reflecting the fact that general vector spaces do not have a canonical choice of basis.

Skeletal categories

Definition

- A category \mathcal{C} is skeletal when no two distinct objects are isomorphic.
- A skeleton of a category \mathcal{C} is a skeletal subcategory \mathcal{A} such that the inclusion $\iota: \mathcal{A} \hookrightarrow \mathcal{C}$ is an equivalence.

Observation

In light of the characterization of equivalences, a skeleton of a category is necessarily full.

Examples of skeletal categories

Example

- Monoids as one object categories are skeletal for formal reasons.
- More interestingly, a preorder is skeletal precisely when $x \leq y$ and $y \leq x$ implies that $x=y$.
- In other words, the skeletal preorders are precisely the posets (partially ordered sets).
- Finally, the example of the equivalence between matrices and linear maps can be interpreted as an identification of Mat as a skeleton of Vect $\mathrm{fg}_{k}^{\mathrm{fg}}$.

Existence of skeleta

Proposition

Every category \mathcal{C} has a skeleton, given by the full subcategory \mathcal{A} spanned by a choice of representatives of each isomorphism class.

Observation

- An equivalence of skeletal categories is an isomorphism.
- Further, equivalent categories have equivalent, and thus isomorphic, skeleta.
- Conversely, if two categories have isomorphic skeleta, they are equivalent.

Corollary

A monotone map of posets is invertible if and only if it is order-reflecting (i.e. order-detecting) and surjective.

Further reading

- As mentioned on the course webpage, Paolo Perrone's Notes on category theory with examples from basic mathematics [Per19] is a fantastic introduction to category theory, and this talk has (by design or otherwise) followed it quite closely.
- The author's personal introduction to category theory was largely from Emily Riehl's Category Theory in Context [Rie16], which also has several examples from a more traditional mathematical perspective.
- An interesting and very self-contained introduction from a more logical/conceptual perspective can also be found in Lawvere and Schanuel's Conceptual Mathematics [LS09].

References

R
F. William Lawvere and Stephen H. Schanuel.

Conceptual Mathematics: A First Introduction to Categories. Cambridge University Press, 2 edition, 2009.Paolo Perrone.
Notes on category theory with examples from basic mathematics. URL: https://arxiv.org/abs/1912.10642, 2019.
T
Emily Riehl.
Category Theory in Context.
Dover,
URL: http://www.math.jhu.edu/~eriehl/context.pdf, 2016.

