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Categories

Definition

The data of a category C is that of
A collection of objects, denoted C0 or ob C.
A collection of arrows or morphisms, denoted C1 or Arr C. To each
arrow of C are associated two objects of C, a source and a target.
A composition operation ◦, determining for each pair of arrows
X f−→ Y and Y g−→ Z a composite g ◦ f : X → Z. This is required to
satisfy the following properties.

Associativity: For all triples of arrows A f−→ B,B g−→ C,C h−→ D,

h ◦ (g ◦ f) = (h ◦ g) ◦ f

Unitality: For every object X, there is an identity arrow 1X or idX

such that for arbitrary W f−→ X and X g−→ Y we have the equations

1X ◦ f = f g ◦ 1X = g
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Some examples of categories

Examples

Some examples of categories in the spirit that we have motivated them
are

There is the category Set of sets (the objects) and functions (the
arrows) between them.
There is the category Top of topological spaces and continuous
maps between them.
There is a category Meas of measurable spaces and measurable
functions.
There is the category Grp of groups and group homomorphisms.
There is the category Vectk of vector spaces over a field k and linear
maps.
There is a category Ring of (unital) rings and (unital) ring
homomorphisms between them.

We will see more such examples in the following talks.
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Subcategories

Definition

A subcategory of a category C is a category defined by a
subcollection of objects of C, and a subcollection of arrows of C
between these objects containing the respective identities, such that
the composition operation of C restricts to one of this new category.
A subcategory of C is full when its arrows are all arrows of C
between its objects.
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Examples

Example
There are full subcategories of interest of all the examples above. For
instance,

There is the subcategory FinSet of Set given by finite sets and
functions between them.
There is the subcategory CHaus of Top given by the compact
Hausdorff spaces.
There is the subcategory of Vectfg

k of Vectk of finitely generated
vector spaces over a field k and linear maps.
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Edge case: Monoids

Example

Recall that a monoid M is a set (abusively denoted M as well) with
an associative binary operation M × M → M such that there is a
unit element e for this operation.
This can be seen as a category with one object, where the arrows are
the elements of M (with source and target the unique object). The
composition operation is just the multiplication operation of the
monoid.
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Edge case: Preorders

Example

Recall that a preorder is a set with a binary operation ≤ that is
reflexive and transitive.
A preorder can equivalently be represented as a category whose
objects are the elements of the preorder, and a unique morphism
X → Y when X ≤ Y.
An elegant example of price providing such a preorder relation can
be found in [Per19, Example 1.1.4], and similar examples can be
constructed when one deals with objects that are inputs to a kind of
“height function” (for the same reason).
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Finite totally ordered sets

Notation

As a particularly useful class of preorder categories, we will denote
for n ∈ N the finite totally ordered set

[n] := {0 < 1 < . . . < n}

They have the particularly evocative depiction

0 → 1 → · · · → n
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Isomorphisms

Definition

We call an arrow f : X → Y of a category C an isomorphism if it is
invertible, i.e. if there is an arrow g : Y → X such that both f ◦ g and g ◦ f
are the respective identities.

Example
The invertible arrows in Set are the bijections.
In many “algebraic” categories as well, invertibility and bijectivity
imply each other (group/ring homomorphisms, linear maps, etc).
However in the case of Top or Meas, this is not the case, as one
would for instance require the inverses to be continuous or
measurable as well.
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Example
Thinking of a monoid as a category, we see that the invertible
elements of the monoid correspond to the invertible arrows.
Thus for instance, a monoid is a group if and only if every arrow of
the corresponding category is invertible.

Example

In a preorder, two objects are isomorphic if and only if there are
morphisms in both ways between them.
Consequently two objects X,Y are isomorphic if and only if X ≤ Y
and Y ≤ X.
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Functors

Definition

A functor F : C → D from a category C to D is the data of
An assignment on objects ob C → obD
For each pair of objects X,Y an assignment on morphisms

F := FX,Y : C (X,Y) → D (FX,FY)

such that
F takes identities to identities.
For composable X f−→ Y g−→ Z in C,

F (g ◦ f) = F (g) ◦ F (f)
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Examples of functors

Example
Functors between monoids and preorder categories are monoid
homomorphisms and order preserving maps respectively.
For all of our prototypical examples, there are forgetful functors to
Set, which extract the underlying set and underlying function from
the objects and morphisms respectively.
The formation of the free group/vector space/polynomial ring on a
set define functors out of Set, as given a function from one set to
another, one can associate to it the unique arrow between free
objects that acts as the given function on generators.

Example

For a category C, the data of a functor [0] → C corresponds to the datum
of an object of C. Similarly, a functor [1] → C amounts to picking out an
arrow of C.
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Example
Thinking of a group G as a one object category, a functor G → Set
is determined by a set X and a group homomorphism
G → AutSet (X).
In other words, a functor from a group to Set is the data of an
action of the group on a set.
One obtains analogues of this correspondence on replacing Set with
other categories, for instance functors to Top produce continuous
group actions, and functors to Vectk produce representations.
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Definition

Consider functors F ,G : C → D. A natural transformation F → G is
the data of a functor

H : [1]× C → D

such that the restriction of H to {0} × C is F and its restriction to
{1} × C is G.
Unpacking this definition, a natural transformation H : F → G is the
data of an arrow Hc : F (c) → G (c) of D for each object c of C such
that, for each arrow u : x → y of C, the following square in D
commutes

F (x) F (y)

G (x) G (y)

F(u)

Hx

G(u)

Hy

The arrow Hc is called the component of H at c.
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Examples of natural transformations
Example

Thinking of a group as a one object category, and functors G → Set
as G-sets, a natural transformation is a G-equivariant maps.
Similarly, natural transformations between similar functors, say to
topological spaces, or vector spaces are the corresponding notions of
G-equivariant maps.
On the other hand, given order preserving preorder maps
F ,G : C → D, a natural transformation (and there can be at most
one from a given preorder map to another) F → G expresses the
fact that F ≤ G (objectwise).

Construction

Consider functors F ,G,H : C → D, and natural transformations
α : F → G and β : G → H. The (vertical) composition β ◦ α : F → H is
the natural transformation whose component at an object c is

(β ◦ α)c := βc ◦ αc
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Natural Equivalences

Definition

Given functors F ,G : C → D, a natural equivalence is a natural
transformation α : F → G that has an inverse under vertical composition.

Observation
Given functors F ,G : C → D and a natural transformation α : F → G, α
is a natural equivalence if and only if each component αc : F (c) → G (c)
is invertible (in D).
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Equivalences of Categories

Definition

An equivalence of categories is a functor F : C → D such that there
exists a functor G : D → C, as well as natural equivalences
1C ∼= G ◦ F , and F ◦ G ∼= 1D.
In such a scenario one calls G a pseudo-inverse to F .
We will denote equivalences of categories as F : C ∼−→ D, and in
such a scenario write C ≃ D.

Proposition
One can in fact show that pseudo-inverses of an equivalence are
themselves unique up to natural equivalence.
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Fully faithful and essentially surjective functors

Definition

Consider categories C,D, and a functor F : C → D.
We say that F is faithful if for objects X,Y of C, the induced

C (X,Y) → D (F (X) ,F (Y))

is injective.
We say that F is full if for objects X,Y of C, the induced

C (X,Y) → D (F (X) ,F (Y))

is surjective.
We say that F is fully-faithful if it is both full and faithful.
We say that F is essentially surjective if every object Y of D is
isomorphic to F (X) for an object X of C.
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Characterizing equivalences

Proposition

Consider categories C,D, and a functor F : C → D. Then, F is an
equivalence if and only if it is fully-faithful and essentially surjective.
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An application of the preceding criterion

Example
For a field k, let Mat be the category with objects the k-vector
spaces kn for each n ≥ 0. The arrows km → kn are given by n × m
matrices, and composition by matrix multiplication.
Now, kn has a canonical basis, and thinking of such a matrix as
encoding the action of a linear map on this basis we get a functor
Mat → Vectfg

k .
From classic linear algebra one knows that the information of how a
linear map is characterised by its action on a basis is precisely given
by a matrix as such. Thus one fully-faithfulness.
Additionally, essential surjectivity is reflected as the fact that every
vector space has a basis (which of course, we have assumed to be
finite). Thus in particular this functor is an equivalence.
Somewhat interesting is the fact that we do not have a canonical
explicit pseudo-inverse to Mat → Vectfg

k . This can be seen as
reflecting the fact that general vector spaces do not have a canonical
choice of basis.
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Skeletal categories

Definition

A category C is skeletal when no two distinct objects are isomorphic.
A skeleton of a category C is a skeletal subcategory A such that the
inclusion ι : A ↣ C is an equivalence.

Observation
In light of the characterization of equivalences, a skeleton of a category is
necessarily full.
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Examples of skeletal categories

Example
Monoids as one object categories are skeletal for formal reasons.
More interestingly, a preorder is skeletal precisely when x ≤ y and
y ≤ x implies that x = y.
In other words, the skeletal preorders are precisely the posets
(partially ordered sets).
Finally, the example of the equivalence between matrices and linear
maps can be interpreted as an identification of Mat as a skeleton of
Vectfg

k .
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Existence of skeleta

Proposition

Every category C has a skeleton, given by the full subcategory A spanned
by a choice of representatives of each isomorphism class.

Observation
An equivalence of skeletal categories is an isomorphism.
Further, equivalent categories have equivalent, and thus isomorphic,
skeleta.
Conversely, if two categories have isomorphic skeleta, they are
equivalent.

Corollary
A monotone map of posets is invertible if and only if it is order-reflecting
(i.e. order-detecting) and surjective.
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Further reading

As mentioned on the course webpage, Paolo Perrone’s Notes on
category theory with examples from basic mathematics [Per19] is a
fantastic introduction to category theory, and this talk has (by
design or otherwise) followed it quite closely.
The author’s personal introduction to category theory was largely
from Emily Riehl’s Category Theory in Context [Rie16], which also
has several examples from a more traditional mathematical
perspective.
An interesting and very self-contained introduction from a more
logical/conceptual perspective can also be found in Lawvere and
Schanuel’s Conceptual Mathematics [LS09].
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