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1. A classification of projective embeddings

Recall that we established a correspondence for a complex manifold X between
holomorphic maps X → Pn(C) and isomorphism classes of line bundles on X with
chosen generating sections s0, s1, . . . sn. Precisely, we showed that there is a bijec-
tive correspondence

{(L, (s0, . . . , sn)) : L a line bundle on X, generated by s0, . . . , sn}/∼ → {holomorphic X → Pn(C)}

Where ∼ is the equivalence relation of line bundle isomorphism preserving choice
of sections.

Our strategy to construct projective embeddings will involve considering the
maps induced by suitable line bundles such that the s0, . . . , sn form a basis of the
space of global sections.

The upshot of this will be that for any other basis t0, . . . , tn the two maps
X → Pn(C) so defined differ by a projective automorphism given by the change of
basis transformation. Thus we may talk about the space of global sections defining
a projective embedding, as it does for one choice of basis if and only if it does for all
choices. The following proposition gives us a characterization of when this occurs.

Remark 1.1. By a projective embedding we mean an embedding into projective
space, that is an injective immersion into projective space. In particular we do
not require them to be closed embeddings. However the embeddings we ultimately
construct will be maps from compact spaces to separated spaces, hence necessarily
closed as well.

Proposition 1.2. Let L be a line bundle on a complex manifold X generated
by (global) sections. Then the map φ : X → Pn(C) induced by a(ny) basis is an
embedding if and only if L has the following properties:

• (The sections of) L separate points: For any distinct points x 6= y of X,
there is some section s ∈ L(X) vanishing at precisely one of the two points.
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• (The sections of) L separate tangent vectors: For all points x ∈ X the
composite map of taking stalks at x and quotienting

d′x : {s ∈ L(X) : sx ∈ mxLx} → mxLx�m2
xLx(1.3)

s 7→ [sx](1.4)

is a surjection.

Proof. We first show that if the sections of L separate points and tangent vectors,
then the map defined by a basis s0, . . . , sn is a projective embedding. Separating
points implies that the map X → Pn(C) is injective, as if two distinct points p 6= q
had the same image, then all sections in a basis (and hence all sections) would have
value at q nonzero scalar multiple (the scalar in question would be independent of
the section) of their value at p, so no section would vanish at precisely one of the
two points. Thus we need only prove that it is an immersion.

First, note that for any x ∈ X we may identify

mxLx�m2
xLx
∼= mx�m2

x
⊗OX,x

Lx ∼= Ω1
X(x)⊗OX,x

Lx

and write the map d′x in terms of the exterior derivative d. A section s such that
sx ∈ mxLx can be written in a suitable neighborhood U of x as s = f · t with
f ∈ OX(U) such that fx ∈ mx and t ∈ L(U). Then the map d′x sends s to
df ⊗ tx. Further as part of our classification, we saw that there is an isomorphism
φ∗OPn(C)(1) ∼= L under which the pullbacks of the global sections zi of OPn(C)(1)
correspond to the si.

The point of doing this is that the property of being an immersion can equiv-
alently be stated as the pullback Ω1

Pn(C)(φ(x)) → Ω1
X(x) being surjective for any

point x ∈ X. Consider any arbitrary x ∈ X and set p := φ(x). There is a map

d1 : {s ∈ OPn(C)(1)(Pn(C)) : sp ∈ mpOPn(C)(1)p} → Ω1
Pn(C)(p)⊗OPn(C),p OPn(C)(1)p

defined the same way as d′x, and d1 is surjective (we have in fact identifiedOPn(C)(1)(Pn(C))
with the space of linear homogenous polynomials in n+1 variables, so we can think
of this as a ”linear approximation”). There is also the pullback mapOPn(C)(1)(Pn(C))→
φ∗OPn(C)(1)(X) ∼= L(X), a surjection (since the sections zi pull back to the sections
si, and the si generate L(X)) restricting to a surjection

{s ∈ L(X) : sx ∈ mxLx} → {s ∈ OPn(C)(1)(Pn(C)) : sp ∈ mpOPn(C)(1)p}

The OPn(C),p-linear pullback Ω1
Pn(C)(p)→ Ω1

X(x) induces on taking the tensor prod-

uct with OPn(C)(1)p a map

γ : Ω1
Pn(C)(p)⊗OPn(C),p OPn(C)(1)p → Ω1

X(x)⊗OPn(C),p OPn(C)(1)p

∼= Ω1
X(x)⊗OX,x

OX,x ⊗OPn(C),p OPn(C)(1)p ∼= Ω1
X(x)⊗OX,x

Lx
fitting into a commutative square

{s ∈ L(X) : sx ∈ mxLx} Ω1
Pn(C)(p)⊗OPn(C),p OPn(C)(1)p

{s ∈ OPn(C)(1)(Pn(C)) : sp ∈ mpOPn(C)(1)p} Ω1
X(x)⊗OX,x

Lx

γ

d′x

with both the top and left morphisms surjective. Consequently the bottom map
d′x is surjective (our separating morphisms criterion) precisely when the right map
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γ is. But γ can alternatively be described as the just the map Ω1
Pn(C)(p)→ Ω1

X(x)

itself viewed under the isomorphisms Ω1
Pn(C)(p)

∼= Ω1
Pn(C)(p)⊗OPn(C),pOPn(C)(1)p and

Ω1
X(x) ∼= Ω1

X(x)⊗OX,x
Lx (they are both invertible sheaves). Thus if γ is surjective,

so is the pullback map and so if the sections of L separate tangent vectors then the
map φ defined is an immersion, and conversely.

To complete the proof of the converse, we must show that if the map φ so
defined is a projective embedding then the sections of L separate points. Con-
sider any distinct p 6= q and let their images have coordinates φ(p) = (z0 : · · · :
zn) and φ(q) = (w0 : · · · : wn). Injectivity of φ then implies that the vectors
(z0, . . . , zn), (w0, . . . , wn) ∈ Cn+1 are linearly independent. Thus we may find a
hyperplane containing one but not the other, or equivalently we may find a linear
homogenous polynomial in n+1 variables vanishing at one point but not the other.
This pulls back to a suitable section in L(X) that ”separates” the two points. �

Definition 1.5. When a line bundle L on a complex manifold X generated by
(global) sections satisfies either of the two equivalent conditions in the proposition,
we say that L is very ample. We say such an L is ample when there is an N ∈ N>0

such that for all n ≥ N , L⊗n is very ample.

2. A criterion for a line bundle to be very ample

Notation 2.1. For a line bundle L and a divisor D on a Riemann surface X, we
define

L(D) := L ⊗OX
OX(D)

called the sheaf of meromorphic sections of L which are multiples of −D.

Remark 2.2. We know that any line bundle on a compact Riemann surface is (up
to isomorphism) of the form OX(K) for some divisor K, so our definition is just
L(D) ∼= OX(K +D). In particular if D is a positive divisor (which will be the case
we will consider) then L(−D) ⊆ L.

Proposition 2.3. A line bundle L on a compact Riemann surface X is very ample
precisely when for any points p, q of X defining divisors p := (p) = 1 · p, q := (q) =
1 · q (which we abusively also call p and q) we have the dimension formula

dimH0(X,L(−p− q)) = dimH0(X,L)− 2

Proof. Assume that the dimension formula holds for any points p, q ∈ X. Then we
have the containment, L(−p− q)(X) ( L(−p)(X) ( L(X) with each containment
having codimension 1 (the inequality in Ex11.1(i) shows that the codimensions of
both inclusions are at most one, and hence must both be one by the dimension
formula). We check first that L is generated by global sections and then the two
criteria of the previous classification, namely that the sections L separates points
and tangent vectors.

The map L(X) → Lp�mpLp sending a section s to the class of its stalk [sp]

has kernel L(−p)(X), so is a surjection by L(−p)(X) ( L(X) having codimension
1. Thus L is generated by global sections. Further, fixing arbitrary p the proper
containment L(−p− q)(X) ( L(−p)(X) for any q implies that for any q 6= p, there
is a section s ∈ L(−p)(X) \ L(−p− q)(X). So s ∈ L(X) is a section vanishing at p
but not at q. As p 6= q were arbitrary, the sections of L separate points. Finally,
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for any point p ∈ X, the existence of an s ∈ L(−p)(X) \ L(−2p)(X) implies the
surjectivity of the composite

L(−p)(X)→ mxLx → mxLx�m2
xLx

as mx�m2
x

is one dimensional over C. Thus the sections of L separate tangent vectors

as well.
Conversely if L is very ample, we may simply run the arguments in reverse to

get the dimension formula (so in particular we need only separating points to get

dimH0(X,L(−p− q)) = dimH0(X,L)− 2

when the two points are distinct, and only separating tangent vectors when they
are the same) �

3. Compact Riemann surfaces are projective

Theorem 3.1. Let X be a compact Riemann surface. Then X admits a projective
embedding.

Proof. We find a line bundle satisfying the hypothesis of the preceding criterion.
Our first observation is based on the Riemann-Roch theorem for a line bundle L
over a compact Riemann surface X of genus g, which states that

χ(X,L) = 1− g + c1(L)

where c1 is the first Chern class map Pic(X) ∼= H1(X,O×X)→ H2(X,Z) ∼= Z (recall
that c1(OX(D)) = degD). This is simply a restatement of the form in the lecture
notes in light of the fact that every such line bundle L is of the form OX(D) for
some divisor D. Then for any points p, q ∈ X,

c1(L(−p− q)) = c1(L ⊗OX
OX(−p− q)) = c1(L) + c1(OX(−p− q)) = c1(L)− 2

so in particular χ(X,L(−p − q)) = χ(X,L) − 2. Now if the first cohomology
groups vanish, the Euler characteristic will agree with the dimension of the zeroth
cohomology, equivalently that of the space of global sections. Thus we need only
find a line bundle L such that H1(X,L) = 0 and for any points p, q ∈ X the
associated first cohomology group, H1(X,L(−p− q)) = 0 as well.

Our next observation is that we may restate the vanishing of these cohomology
groups using Serre duality. For a line bundle L on a compact Riemann surface X,
Serre duality asserts the nondegeneracy of a bilinear pairing (OX(D)∨ ∼= OX(−D))

H0(X,L∨ ⊗OX
Ω1
X)×H1(X,L)→ C

so the vanishing criterion is equivalent to the vanishing of H0(X,L∨⊗OX
Ω1
X) and

H0(X,L∨(p + q) ⊗OX
Ω1
X). We know that on a compact Riemann surface X, the

line bundle OX(D) has no nonzero global sections whenever the degree of D is
negative. Again, we can restate that in terms of a line bundle L using the Chern
map as L(X) = 0 whenever c1(L) < 0. Then we can say that a line bundle L is
very ample when

c1(L∨(p+ q)⊗OX
Ω1
X) = c1(Ω1

X)− c1(L) + 2 < 0

as then c1(L∨ ⊗OX
Ω1
X) = c1(Ω1

X) − c1(L) < 0 as well. We have assumed that
c1(Ω1

X) = 2g − 2 so in light of this it suffices to find L such that c1(L) > 2g. But
we may always do so by taking sufficiently high tensors of the bundle associated to
a point divisor. In other words, the line bundle associated to any point divisor is
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ample. Thus any compact Riemann surface admits a very ample line bundle, and
hence a projective embedding. �

Remark 3.2. We may strengthen this result and construct embeddings into Pn(C)
with n given in terms of the genus g. If g = 0, any point divisor is already very ample
in light of our Chern criterion, so as dimCOX(p)(X) = 2 (by Riemann-Roch for
instance) this defines an embedding into P1(C) (which is necessarily biholomorphic).
If g = 1 we may use OX(3p) for any point p to get (by analogous calculation) an
embedding into P2(C) (cf. Exercise 11.1). Finally, when g ≥ 2 we may use the
”tri-canonical” bundle (Ω1

X)⊗3 (observe now 3 · 2(g − 1) > 2g) to get a canonical

embedding into P5(g−1)−1(C).
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