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1. Generalities on projective embeddings of complex tori

Definition 1.1. Let U,W denote (connected) complex manifolds. A holomorphic
f : U → W is an immersion if at each point x ∈ U the differential/derivative
(df)(x) : T ′xU → T ′f(x)W is injective.

Explicitly, if z1, . . . , zm are coordinate functions of U in a neighborhood of x
and w1, . . . , wn are coordinate functions of W in a neighborhood of f(x), then

the matrix
(
∂fi
∂zj

(x)
)
i,j

has rank m, where fi is defined as fi(z) := wi(f(z)) in a

neighborhood of x.

Definition 1.2. Let U,W denote (connected) complex manifolds. An embedding
f of U into W is an injective immersion f : U → W such that the image is locally
closed in W .

Definition 1.3. A closed embedding is an embedding that is closed as a map of
topological spaces.

Remark 1.4. An embedding of U into W is just a biholomorphic mapping onto a
locally closed submanifold of W . However we have not encountered submanifolds
except in the special case of open submanifolds. Thus we instead may turn this
into a definition.

Definition 1.5. A submanifold U of W is a manifold such that the inclusion is
an immersion. Similarly a closed submanifold is a submanifold that is a closed
subspace of W .

Definition 1.6. A projective embedding of a complex manifold M is a closed
embedding of M in PN(C) for some N .

We are interested in projective embeddings of Abelian varieties, whose underly-
ing complex manifolds are simply complex tori. Our approach fits into a general
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procedure for embedding the quotient manifold of a (suitable) group action into
projective space.

Notation 1.7. In this section we will denote by M a complex manifold and by G a
group acting properly discontinuously and freely on M through biholomorphisms,
write X := G\M for its quotient manifold (as in Talk 1). PN(C) will as usual
denote complex projective space of dimension N .

We desire an embedding X := G\M � PN(C). This is determined by the com-
posite M → G\M � PN(C) that is G invariant. A collection of N +1 holomorphic
functions f0, f1, . . . , fN on M determines a map (f0, . . . , fN ) : M → CN+1, and
if the fi do not simultaneously vanish at any point of M we get a holomorphic
M → CN+1 \ 0→ PN(C).

We ask when this descends to a map X → PN(C), and this requires that for any
m ∈M, g ∈ G, there is a nonzero complex number λg(m) such that

(f0(g ·m), . . . , fN (g ·m)) = (f0(m), . . . , fN (m))λg(m)

That is, each fi satisfies fi(g · m) = f(m)λg(m). This is the form of the func-
tional equation that motivated the definition of a factor of automorphy in Talk 3,
and suggests that we look for functions fi satisfying precisely this equation when
(λg)g∈G is a genuine factor of automorphy for G\M .

Consider such a factor of automorphy, and let A be the subspace of OM (M)
comprising of functions satisfying this functional equation with respect to (λg)g∈G.
Then if A is of finite rank (equivalently, dimension) N + 1 over C, choosing our
f0, . . . , fN to be a C-basis of A ensures that we get a holomorphic map f : G\M →
PN(C).

Specializing to the case of a complex torus X = Z/L, our f : X → PN(C)
is further a map from a (quasi-)compact space to a Hausdorff (i.e. separated)
space, and hence is also closed. Thus in order to see that it is an embedding it
suffices to check that both f and df are injective (i.e. that df is an injective linear
transformation at each point).

We will soon show that for a (polarized) Abelian variety there is always a suit-
able A, such that the map f defined as above will indeed be an embedding. We
will in fact define A to be a subspace of theta functions. Observe also that an
invertible linear CN+1 → CN+1 induces a biholomorphism PN(C)→ PN(C) (called
a ”projective transformation”). Any two embeddings induced by choices of bases as
above will differ by such a projective transformation (precisely the one determined
by the change of base matrix corresponding to those two bases of A). So in such a
situation we say that A induces a projective embedding of X.

Remark 1.8. We saw in Exercise 6.1 of the Cohomology of Sheaves 2 problem
sets that holomorphic maps X → PN(C) for a complex manifold X correspond to
isomorphism classes of pairs of line bundles and N + 1 generating (global) sections.
Theta functions are global sections (cf. Section 3 of Talk 3) of such line bundles
on Z/L, and our construction will in fact fit into this formalism. However thanks
to our explicit description of theta functions on Z we may make more elementary
statements (and more importantly, calculations) in the case under consideration.

2. Projective Embeddings of Polarized Abelian Varieties

Theorem 2.1. Let S = S(Q, l, ψ) be the ring of theta functions of a polarized
abelian variety (Z/L, (kH)k>0) as defined in Talk 8 (so in particular H := Her(Q)
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is non-degenerate). Then Sm = L (mQ,ml,ψm)(Z/L) induces a projective embedding
of Z/L for every m ≥ 3.

Remark 2.2. We follow primarily the proof in [Mumford, ”Theorem of Lefschetz”,
Chapter 1 - Page 28 of the second edition/Page 30 of the first] with some influence
from [Igusa, Section III.7]

Proof. We specialize the discussion above to the case where the factor of auto-
morphy (λg) is the one determined by (mQ,ml, ψm), so that A is now the space
L (mQ,ml,ψm)(Z/L). Firstly, we have seen that the space A is finite dimensional.
We must now show that if Θ0, . . . ,ΘN is a basis, the Θi define an embedding.

Our next requirement was that the Θi do not vanish simultaneously at any point.
As they were chosen to be a basis of A, this is equivalent to there being a Θ ∈ A
for each point x ∈ Z/L that does not vanish at x.

Lemma 2.3. Consider an element θ of L (Q,l,ψ)(Z/L) . For any k points a1, . . . , ak

of Z such that
∑k
i=1 ai = 0, the function Θ(z) :=

∏k
i=1 θ(z+ai) defines an element

of L (kQ,kl,ψk)(Z/L). Further, if θ 6= 0 and k ≥ 2 we may choose for any a ∈ Z
suitable ai as above such that the function Θ so defined is non-vanishing at a.

Proof. Note that we can write the factor of automorphy (which we now denote by
ut(z), to fit previously established notation) corresponding to (Q, l, ψ) in the form

(where e(z) := e2πiz as before) ut(z) = e(Ql(z) + ct) = φ(t) e(Q(z,t)
2i + Q(t,t)

4i + l(t))

for z ∈ Z, t ∈ L, where Qt(z) = Q(z,t)
2i is a C-linear form and ct ∈ C is a constant

for each t ∈ L (see Definition 3.1 of Talk 3 and Theorem 1 of Talk 5). Thus for
t ∈ L, Θ satisfies the transformation relation

Θ(z + t) = Θ(z) · (
k∏
i=1

ut(z + ai))

and
k∏
i=1

ut(z + ai) = e(

k∑
i=1

Qt(z + ai) + ct) = e(k(Qt(z) + ct))

where the last inequality is due to the linearity of Qt. This shows the first assertion.
For the second, recall that if θ 6= 0 then the closed subspace V := θ−1(0) − a

contains no nonempty open subspaces of Z (by the “Identity theorem”, Corollary
2.3 of Talk 1), or in other words its complement is a dense open subspace. Thus
the open map (Z \V )k−1 → Z defined by (x2, . . . , xk) 7→ −(x2 + x3 + · · ·+ xk) has
image not contained in V . Let a1 be a point in the image not contained in V and
(a2, . . . , ak) be a preimage. Then a1 + a2 + · · ·+ ak = 0 and each a+ ai /∈ θ−1(0),
so Θ(a) =

∏
θ(a+ ai) 6= 0 as desired. �

As a consequence, Sm does in fact induce a holomorphic map to PN(C) as in the
schema described in the previous section (in fact we also see that it suffices to have
m ≥ 2 to define holomorphic maps in this manner).

Our next step is to show that the map f so defined is injective. Assume for the
purpose of contradiction that it is not, so there exist z, w ∈ Z such that z −w /∈ L
(i.e. z, w define different points of Z/L) and

(Θ0(z) : · · · : ΘN (z)) = (Θ0(w) : · · · : ΘN (w))
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That is, for some λ 6= 0 each Θi(z) = λΘi(w). Then in fact Θ(z) = λΘ(w) for
every Θ ∈ A since the Θi are a spanning set.

In particular, we can apply the above lemma for any a, a2, . . . am−1 ∈ Z to get
the relation

θ(z−a)θ(z−a2) . . . θ(z+a+a2+· · ·+am−1) = λθ(w−a)θ(w−a2) . . . θ(w+a+a2+· · ·+am−1)

for any particular θ ∈ L (Q,l,ψ)(Z/L). We consider this as an equation between
functions in a for fixed a2, . . . , am−1. We may apply logarithmic differentiation to
eliminate all factors not involving a, and write

ω(z + a+ a2 + · · ·+ am−1)− ω(z − a) = ω(w + a+ a2 + · · ·+ am−1)− ω(w − a)

where ω denotes the logarithmic (meromorphic) differential d(log θ) = dθ
θ . Then

we see that ω(z+a)−ω(w+a) is a translation invariant form (cf. Definition 4.4 of
Talks 1-2), so we can write it as dl for l = l(a) a (homogenous) linear polynomial in

the coordinates of a. So we have that the logarithmic differential of θ(z+a)
θ(w+a) is of the

form dl. There is a nonempty open connected set where θ(z+a)
θ(w+a) = eφ(a) for some

holomorphic φ, and then the logarithmic differential is just dφ. So we have dφ = dl
locally, and hence φ = l+k1 for some constant k1. Hence θ(z+a) = kθ(w+a)el(a) for
some nonzero constant k on that neighbourhood. This is an equality on a nonempty
open connected set between holomorphic functions on Z, hence the equality holds on
all of Z by the Identity theorem again. Thus, reparametrizing by setting y := w+a
we have by linearity of l the relation θ(y + (z − w)) = ηel(y)θ(y) for some nonzero
constant η. Thus, for any θ, the function θ(y + (z − w)) differs from it by a unit,
and z − w /∈ L. A consequence of Theorem 3 of Talk 5 is that the space of all
theta functions θ as above such that θ(y) differs from θ(y + δ) by a unit (where
δ = w − z /∈ L) is contained in the union of finitely many proper subspaces of
L (Q,l,ψ)(Z/L). Thus there is at least one such θ where this cannot happen, a
contradiction. Thus f is injective.

It remains only to show that df is injective. The projection Z → Z/L is a local
biholomorphism so it suffices to show that the composite Z → PN(C) has injective
derivative at each point. Assume that df is not injective at some z ∈ Z, that
is some tangent vector

∑g
i=1 αi

∂
∂zi

at z is mapped to 0. In particular, it yields

0 when applied to the coordinate functions. f(z) = (Θ0(z) : · · · : ΘN (z)) with
some Θi(z) 6= 0, for simplicity assume i = 0, the other cases are identical up to
re-indexing. Then the Θi

Θ0
, i > 0 are coordinate functions in a neighbourhood of

f(z), and we compute for each i > 0

g∑
j=1

αi
Θ0(z)2

(
Θ0(z)

∂Θi

∂zj
(z)−Θi(z)

∂Θ0

∂zj
(z)
)

= 0

so if we define α0 := −1
Θ0(z)

∑g
j=1 αj

∂Θ0

∂zj
(z)

α0φ(z) +

g∑
j=1

αj
∂φ

∂zj
(z) = 0

when φ = Θi for arbitrary i (the case i = 0 is tautological). Thus it is in fact
true for arbitrary φ ∈ L (mQ,ml,ψm)(Z/L). So we write D(log φ)(z) = −α0, where

D(log φ) = Dφ
φ denotes the logarithmic (directional) derivative as before.
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Again, we consider the theta functions

φ(w) = θ(w − a)θ(w − b)θ(w − a3) . . . θ(w + a+ b+ a3 + · · ·+ am−1))

for a, b, a3, . . . am−1 ∈ Z. If we define h(w) := D(log θ)(w) : Z → C, then we get

h(z−a)+h(z−b)+h(z−a3)+· · ·+h(z−am−1)+h(z+a+b+a3+· · ·+am−1) = −α0

for all a, b, a3, . . . am−1 ∈ Z. We may in fact set ai = 0 for all i ≥ 3 and obtain
some k ∈ C an equation

h(z − a) + h(z − b) + h(z + a+ b) = k

for all a, b ∈ Z. Consider this as an equation of functions in a for arbitrary fixed
b, then (denoting the coordinate functions by ai) we may differentiate with respect
to ai and observe that

∂h

∂ai
(z + a+ b) =

∂h

∂ai
(z − a)

for arbitrary b and hence that the partial derivatives of h are all constant. It then
follows that h(w) =

∑g
i=1 ciwi + s for some fixed c1, c2, . . . cg, s ∈ C (where wi are

the coordinates of w).

Lemma 2.4. There is an α ∈ Z \ 0 and c ∈ C such that for all λ ∈ C, w ∈ Z,

θ(w + λα) = ecλ
2+λh(w)θ(w)

Proof. It suffices to show equality for any arbitrary fixed w ∈ Z. For any c, the

logarithmic derivative of ecλ
2+λh(w)θ(w) with respect to λ is 2cλ + h(w). We set

α := (α1, α2, . . . , αg) 6= 0 and c := 1
2 (h(α)− s) = 1

2

∑g
i=1 ciαi so that 2cλ+ h(w) =

h(w + λα). Now the logarithmic derivative of θ(w + λα) with respect to λ is by
the chain rule

∑g
i=1 αi

(
∂
∂zi

(log θ)
)
(w + λα) = h(w + λα). Thus the logarithmic

derivatives of both sides agree and so as before there is an η ∈ C× such that

θ(w + λα) = ηecλ
2+λh(w)θ(w) holds for all λ. Considering the case λ = 0 shows

that η = 1 when θ(w) 6= 0. When it does vanish we may take η = 1 anyway to

write θ(w + λα) = ecλ
2+λh(w)θ(w) for all λ ∈ C, w ∈ Z. �

Thus we see that for all λ ∈ C, θ(w + λα) differs from θ(w) by a unit. This
contradicts Theorem 3 of Talk 5 as well. Consequently the derivative df is injective
at each point, completing the proof.

�

Corollary 2.5. In the scenario of the theorem, let (Q′, l′, φ′) be any type of a
theta function for Z/L such that Her(Q′) = mH. Then L (Q′,l′,ψ′)(Z/L) defines a
projective embedding of Z/L as well.

Proof. The theorem asserts that a basis of L (mQ,ml,ψm)(Z/L) induces a projective
embedding of Z/L. We have seen in Theorem 3.5 of Talk 8 that there is an isomor-
phism L (mQ,ml,ψm)(Z/L) ∼= L (Q′,l′,ψ′)(Z/L) that has form θ(z) 7→ η(z)θ(z + a)
where η is a trivial theta function, and in particular a unit. Thus if (a basis of) one
defines a projective embedding, so does (a basis of) the other. �

Remark 2.6. From the above corollary onwards, we return to following [Igusa]
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3. A (Polarized) Abelian Variety is a complex projective variety

Definition 3.1. A Zariski closed set of Kn is the set of points (x1, . . . , xn) defined
by the simultaneous vanishing of a collection of polynomials over K in n symbols.
We write

V ({fi}i∈I) = {x ∈ Kn : ∀i ∈ I, fi(x) = 0}
We also call them affine Zariski-closed sets.

Observation 3.2. The vanishing set of a collection of polynomials is the same as
the vanishing set of the ideal they generate, that is

V ({fi}i∈I) = V (〈{fi}i∈I〉)
The Hilbert basis theorem asserts that K[X1, . . . , Xn] is noetherian, so in particular
we can always define an affine Zariski-closed set by finitely many polynomials.

Definition 3.3. Let X ⊆ Kn. Define I(X) to be the ideal of K[X1, . . . , Xn] defined
by the collection of polynomials vanishing at all points of X. Observe that this ideal
is always reduced.

We will assume that K is algebraically closed so that we may use Hilbert’s
Nullstellensatz.

Theorem 3.4. Hilbert’s Nullstellensatz: For an ideal a of K[X1, . . . , Xn] with K
algebraically closed,

I(V (a)) =
√
a := {f : ∃n ∈ Z>0, f

n ∈ a}

Corollary 3.5. I and V define an order reversing bijection between Zariski-closed
sets in Kn and reduced ideals of K[X1, . . . , Xn].

Corollary 3.6. For any subset X ⊆ Kn, V (I(X)) is the smallest Zariski-closed
set containing it.

Remark 3.7. The affine Zariski-closed sets are the closed sets of a topology called
the Zariski topology on Kn.

When K = C, as polynomials define continuous functions all affine Zariski-closed
sets are closed in the Euclidean/Analytic topology.

Definition 3.8. An affine Zariski-closed set X is called an irreducible affine variety
or just affine variety when the ideal I(X) is prime.

In this case the transcendence degree overK of the quotient field ofK[X1, . . . , Xn]�I(X)
is called the dimension of X, denoted dim(X).

Observation 3.9. An affine Zariski-closed set X is an (irreducible) affine variety
precisely when it is topologically irreducible (that is, it is not the union of two
proper closed subspaces). Every affine Zariski-closed set can be represented uniquely
as a finite union of affine varieties such that none of them strictly contain each
other (called irreducible components). We define dim(X) to be the maximum of the
dimensions of the irreducible components.

Definition 3.10. Let X be an affine variety of dimension d in Kn. Then if I(X) =
(P1, . . . , Pm), we say that a point a of X is simple (this notion is also often called
“smooth” or “non-singular”) if the “Jacobian at a” (∂Pi

∂zj
(a))i,j has rank n−d. This

property is in fact well defined independent of the choice of generators Pi.
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Proposition 3.11. Let X be an affine variety of dimension d in Kn and I(X) =
(P1, . . . , Pm). The rank of the Jacobian at a point of X is always at most n − d.
Thus the simple points are precisely those points where this rank is ”maximal”.

Observation 3.12. Let X be an affine variety of dimension d in Kn and I(X) =
(P1, . . . , Pm). We know that the rank of an m × n matrix is r precisely when all
(r+ 1)× (r+ 1) minors vanish but some r× r minor does not. The Jacobian can be
written as a matrix of polynomial functions, so if we define an affine Zariski-closed
set Y by the vanishing of the (n − d) × (n − d) minors, the set Xs := X \ Y is
precisely the set of simple points of X.

In particular, the set of simple points is the difference of X and a Zariski-closed
subspace.

Definition 3.13. A Zariski closed subset of PN(K) is the set of points (say with
homogenous coordinates (x0, . . . , xN )) defined by the vanishing a collection of ho-
mogenous polynomials over K in N+1 symbols X0, . . . , XN (the notion of vanishing
is well defined as the polynomials are homogenous). We write

V ({fi}i∈I) = {x ∈ PN(K) : ∀i ∈ I, fi(x) = 0}
We also call them projective Zariski-closed sets.

Observation 3.14. Again, the vanishing set of a collection of polynomials is the
same as the vanishing set of the ideal they generate, that is

V ({fi}i∈I) = V (〈{fi}i∈I〉)
and we can find a finite collection of homogenous generators for the ideal.

Remark 3.15. The projective Zariski-closed sets are also the closed sets of a topology
called the Zariski topology on PN(K). All projective Zariski-closed sets in PN(C)
are again closed in the Euclidean/Analytic topology.

Definition 3.16. Let X ⊆ PN(K). Define I(X) to be the homogenous ideal of
K[X0, . . . , XN ] generated by the collection of homogenous polynomials vanishing
at all points of X.

Definition 3.17. Let X be a projective Zariski-closed set in PN(K), and let

π : KN+1 \ 0 → PN(K) denote the projection. Then X̃ := π−1(X) ∪ 0 ⊆ KN+1

is precisely the affine Zariski-closed set defined by I(X). We call X̃ the cone over

X. Further, we define dim(X) := dim(X̃)− 1.

Proposition 3.18. Unlike the affine case, V and I do not define a correspondence
between varieties and reduced homogenous ideals. However if we exclude the ideal
K[X0, . . . , Xn]+ = (X0, . . . , Xn) of K[X0, . . . , Xn] which along with K[X0, . . . , Xn]
itself both cut out the empty set we do in fact get a bijection. In particular for
X ⊆ PN(K), V (I(X)) is still the smallest projective Zariski-closed set containing
X.

Definition 3.19. A projective Zariski-closed set X is called a projective variety
when the ideal I(X) is prime. This is equivalent to the cone X̃ over X being an
affine variety.

Definition 3.20. A point x of a projective variety X is simple when some x̃ ∈
π−1(x) is a simple point of X̃. This is equivalent to every x̃ ∈ π−1(x) being a

simple point of X̃.
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We state the following theorem without proof, however a discussion on the idea
of the proof can be found in [Igusa, Proposition 3, Section III.4] .

Theorem 3.21. If X is an (irreducible) affine variety of dimension d in Cn, the
subset of simple points Xs is a dense connected open subset of X that is a complex
submanifold of Cn of dimension d.

Corollary 3.22. If X is a projective variety of dimension d in PN(C), the set
Xs of simple points is a dense open connected subspace of X that is a complex
submanifold of PN(C) of dimension d.

Remark 3.23. The property of being a submanifold is a familiar one, as much like
in the real case, the variety defined by a finite set of polynomials can be seen as
a level set (preimage of a point) of a function whose components are polynomial
functions. The simpleness/smoothness/non-singularity condition then asserts that
the function defining the variety satisfies the hypotheses of the (complex) implicit
function theorem (cf. [Griffiths-Harris, Page 19,22]). However the connectivity
result is a feature of the complex case, as it is not true in general in the real case
(for example consider the hyperbola x2 − y2 = 1 in R2).

Theorem 3.24. Assume that a basis of L (Q,l,ψ)(Z/L) defines a projective embed-
ding of Z/L as above, say of the form z 7→ (θ0(z) : · · · : θN (z)) (such that θ0, . . . , θN
is a basis of L (Q,l,ψ)(Z/L)). Then, the image X of the embedding is a projective
variety of dimension g := rankC Z = dimC Z.

Proof. Recall that the ring generated by the theta functions R = C[θ0, . . . , θN ] is a
graded integral domain. This is the image of C[T0, . . . , TN ]→ C[θ0, . . . , θN ] sending
Ti 7→ θi, so the kernel K is a homogenous prime ideal. Further, a homogenous
polynomial P is contained in K if and only if P (θ0, . . . , θN ) vanishes as a function
on Z, that is P vanishes on the image X. Consequently if we define Y := V (K),
Y is the smallest Zariski-closed set containing X and is a projective variety.

We first show X = Y , so that X is a projective variety. If we set A := Im(H)
(where H := Her(Q) is the nondegenerate Hermetian form as in the last section)
we know that rankC(Rk) ≤ Pfaff(A)kg for k ∈ Z>0.

[Igusa, Proposition 1, Section III.2] asserts that any g+ 2 homogenous elements
of a graded integral domain S of a field K such that each Sk is finitely generated
over S0 (the “componentwise finiteness” condition) and satisfying the asymptotic
growth condition

dimK(Sk) ≺ kg

are algebraically dependent over K.
In the situation at hand, this implies that any g + 2 homogenous elements of R

are algebraically dependent over C. This implies as in the remark immediately after
Proposition 1 that the dimension d of Y is at most g (recall that the dimension of
a projective variety is 1 less than the dimension of the “cone” over it).

Let Ys denote the simple points of Y , so that it is a dense connected open
subspace of Y that is a d dimensional complex submanifold of PN(C). Further as
it is the difference of Y and a projective Zariski-closed set in PN(C), and Y is the
smallest projective Zariski-closed set containing X there is a point x ∈ X ∩ Ys. X
is compact and hence closed in PN(C), hence X ∩ Ys is closed in Ys.

We show that it is also open in Ys. For any arbitrary point x ∈ X ∩ Ys we may
find a neighbourhood V of x in PN(C) such that Y ∩ V = Ys ∩ V (as Ys is open in
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Y , we can in fact do so with Ys ⊆ V ). Then we have

X ∩ V = X ∩ Y ∩ V = X ∩ Ys ∩ V ⊆ Ys ∩ V
So any point of X ∩ Ys has an open neighbourhood in X that is contained in an
open neighbourhood of it in Ys. But we saw that X,Ys are complex manifolds of
dimensions g and d respectively, so g ≤ d. Recall that we showed that d ≤ g, so we
also get g = d. But since Y differed from Ys by a Zariski-closed set, which is also
closed in the affine topology we can shrink V to get X ∩ V = Ys ∩ V . Thus X ∩ Ys
is also open in Ys. We have shown that it is a nonempty clopen subspace of Ys,
and Ys is connected. Thus Ys ⊆ X. Thus X also contains the closure of Ys in Y ,
which is Y itself. Thus we have X = Y , and Y is a projective variety of dimension
g as desired. �

4. The Field of Abelian functions on a Polarized Abelian Variety

Definition 4.1. If X is an affine Zariski-closed set in Kn such that for a subfield K
of K the ideal I(X) has a generating set that lies in K[X1, . . . , Xn] ⊆ K[X1, . . . , Xn],
we say that K is a field of definition for X, or that X is defined over K.

We then write IK(X) := I(X) ∩K[X1, . . . , Xn]

Proposition 4.2. If X is an affine Zariski-closed set in Kn defined over a subfield
K, then we have an identification(K[X1, . . . , Xn]�IK(X)⊗K K

) ∼= K[X1, . . . , Xn]�I(X)

Definition 4.3. Assume that X is an affine variety in Kn defined over a subfield
K ⊆ K. Then a point x = (x1, . . . , xn) is called generic over K if the homomor-

phism K[t1, . . . , tn] := K[T1, . . . , Tn]�IK(X)→ K[x1, . . . , xn] sending ti to xi is an

isomorphism, where ti denotes the class of the symbol Ti modulo the ideal IK(X)
and K[x1, . . . , xn] is the subring of K generated by the elements xi ∈ K (the homo-
morphism is well defined as x ∈ X). This is equivalent to the transcendence degree
of K(x1, . . . , xn) over K being equal to dim(X).

Proposition 4.4. If X is an affine variety in Kn defined over a subfield K ⊆ K
and the transcendence degree of K over K is at least dim(X), then there exists a
generic point of X over K.

Proposition 4.5. If the algebraically closed field K is of characteristic zero (and
in all cases we consider it will be C) and K is a subfield, a point (x1, . . . , xn) ∈ Kn
is a generic point for a variety defined over K precisely when K is integrally closed
in K(x1, . . . , xn) (that is every element of K(x1, . . . , xn) algebraic over K is an
element of K), sometimes also called maximally algebraic.

Proposition 4.6. If X is an affine variety in Kn defined over a subfield K ⊆ K,
any generic point x of X over K is also a simple point of X.

Our primary application of this notion will be in the following scenario. Let X
be an affine variety in Cn and let P1, . . . , Pm be a finite generating set of I(X).
If we simply adjoin all the coefficients of the Pi to Q to get a subfield K of C,
then X is defined over K by construction. Further K is countable (since an image,
polynomial ring in one variable, or quotient ring of a countable ring is countable).

As C is itself uncountable, its transcendence degree over any countable subfield
K is infinite. Thus in particular X will always have a generic point over K. However
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we in fact have the following result. (A discussion of the proof can be found in Igusa
III.4 as well)

Theorem 4.7. Consider a countable subfield K of C. If X is an affine variety in
Cn defined over K, then the set of generic points of X over K is dense in X (with
respect to the analytic topology).

Corollary 4.8. Let X be an irreducible affine variety in Cn and let R := C[x1, . . . , xn] =
C[T1, . . . , Tn]�I(X). Let a = (a1, . . . , an) be a point of X, then (T1 − a1, . . . , Tn −
an) = I(a) is a maximal ideal containing, I(X), and defines a prime p of R.
Consider an element P

Q of F (R), and let Y be an affine Zariski-closed set strictly

contained in X and also containing all points of X where Q vanishes.

Assume that P (an)
Q(an) is bounded for any sequence (an) in X \ Y (so in particular

such a condition makes sense) that converges to a. Then P
Q is integral over Rp.

Proof. Assume for the purpose of contradiction that this is not true. Let η := Q
P ,

which exists since then P
Q must be nonzero. LetK be the kernel of C[T1, . . . , Tn, t]→

C[x1, . . . , xn, η] and let X̄ := V (K) ⊆ Cn+1 be the affine variety it defines. Then
(a, 0) ∈ X̄, as otherwise there is a polynomial f ∈ R[t] such that f(η) = 0 (so
it is represented by a polynomial in the kernel) but f(0) /∈ p (the polynomial in
question does not vanish at (a, 0)). However this will imply that P

Q is integral over

Rp, a contradiction. Let Ȳ be the points of X̄ lying over Y , then Ȳ is an affine
Zariski-closed set strictly contained in X̄. Consider a countable subfield K of C over
which X̄ and Ȳ are defined, then we may find a sequence of generic points (an, bn)
of X̄ converging to (a, 0) by the denseness guaranteed by the theorem, necessarily
contained in X̄ \ Ȳ since the points are generic for X̄. They however lie in the locus
defined by Q − Pη = 0, so Q(an) − P (an)bn = 0. But the (an) converge to a and
P (an)
Q(an) = 1

bn , which is unbounded. This is a contradiction. �

Observation 4.9. Let X be a projective variety in PN(C). We have for each
0 ≤ i ≤ N local charts CN ∼= Ui ⊆ PN(C) where Ui is the set of points with nonzero
ith homogenous coordinate. Under this, X ∩ Ui corresponds to an affine variety Y
(also denoted Xi) in CN , and the corresponding ideal I(Y ) can be described as a
“dehomogenisation” of I(X). If I(X) is generated by homogenous polynomials of
the variables X0, . . . , XN , then I(Y ) is generated by the polynomials in the variables
X0, . . . , Xi−1, Xi+1, . . . XN obtained by substituting Xi = 1. (Conversely, I(X) can

be obtained by “homogenising” I(Y ), by replacing a variable Xj by a quotient
Xj

T ,
multiplying by a suitable power of T to clear denominators, and reindexing to get
T = Xi)

Definition 4.10. Let Z/L be a polarized abelian variety. Then we call the (global)
meromorphic functions on it abelian functions. In the special case that Z = C is
1-dimensional, we call them elliptic functions.

Recall that for S a graded domain, we denote by F (S) the total quotient field and
by F0(S) the subfield of elements that can be written as quotients of homogenous
elements of the same degree.

Theorem 4.11. Let S = S(Q, l, ψ) be the ring of theta functions of a polarized
abelian variety (Z/L, (kH)k>0) as before. Then F0(S) is precisely the field M (Z/L)
of abelian functions.
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Proof. The elements of S are holomorphic, so the inclusion O(Z) ⊆M (Z) induces
an embedding F0(S) ⊆M (Z/L) (where we identify M (Z/L) as the subset of M (Z)
given by the translation invariant meromorphic functions) since the elements are
quotients of the same degree (so the automorphy factors cancel) . It suffices to show
that every non-zero meromorphic function is represented by an element of F0(S).
Consider such a nonzero element f = (fx)x∈Z/L ∈M (Z/L).

Each fx = gx
hx

for some gx, hx ∈ OZ/L,x, both nonzero as f is a unit. We know
from Talks 1-2 that OZ/L,x is a UFD, so we may even assume that the gx, hx are
coprime for each x. Locally, we have around every point x a neighbourhood V and
g, h ∈ OZ/L(V ) with h nonzero such that we have fx = gx

hx
determined by the stalks

of these local sections. We claim that we can construct a such a local representation
such that the stalks of the local sections are also coprime at each point.

Consider such a local representation {(V i, gi, hi)} (so that the V i cover Z/L).
We will refine this local representation to get one where the stalks are coprime as
desired. Consider (V, g, h) = (V i, gi, hi) for some i, then for an arbitrary x ∈ V let
kx be a greatest common divisor of gx and hx, then there is a smaller neighborhood
W of x and a section k on W with stalk kx at x such that k divides both g, h on
W . Then we may represent f by (W, gk ,

h
k ) on W as well. Doing so for each point

we may cover V by such W ’s, and doing so for each i get a local representation of
f as desired.

So consider such a local representation {(V i, gi, hi)} for f . We claim that the
{(V i, gi)} and {(V i, hi)} define positive divisors. We need only check that on
nonempty intersections V i ∩ V j , they are unit multiples of each other. Note that
we have gihj = higj , that is stalkwise we have

gixh
j
x = hixfxh

j
x = hixg

j
x

But we have ensured that the stalks of the gi, hi and gj , hj are coprime, so they
differ by units stalkwise and hence by units throughout.

Let π : Z → Z/L be the projection. We may identify f with f ◦π, a meromorphic
function on Z. By Theorem 3.2 of Talk 3, there is a theta function θ, say of
type (Q′, l′, ψ′) such that π−1[{(V i, hi)}] is represented by (Z, θ). So then fθ is
defined by a theta function of type (Q′, l′, ψ′) as well (for instance, the positive
divisor [{(V i, hi)}] corresponds also to a theta function θ′, and then θ′ and fθ
define the same divisor, so differ by a holomorphic unit. One then compares the
transformation formula to conclude).

Let Q′′ := d(Q + Q′), l′′ := d(l + l′), ψ′′ := (ψψ′)d for d ≥ 3. Let θ0, . . . , θN
and θ′′0 , . . . , θ

′′
N ′′ denote bases of Sd and L (Q′′,l′′,ψ′′)(Z/L) respectively, then they

both define projective embeddings of Z/L by the results in the previous sections.
Let X and X ′′ respectively denote their images, and let R := C[θ0, . . . , θN ] ∼=
C[T0, . . . , TN ]�I(X) and R′′ := C[θ′′0 , . . . , θ

′′
N ′′ ]
∼= C[T0, . . . , TN ′′ ]�I(X ′′) denote the

corresponding rings of functions. Then,

F0(R) := C
(θ1

θ0
, . . . ,

θN
θ0

)
, F0(R′′) = C

(θ′′1
θ′′0
, . . . ,

θ′′N ′′

θ′′0

)
as subfields of M (Z/L).

Note that Sd · L (dQ′,dl′,ψ′d)(Z/L) ⊆ L (Q′′,l′′,ψ′′)(Z/L). Thus we in fact have

an inclusion F0(R) ⊆ F0(R′′) (which can be seen as θi
θ0

= θiθ
′

θ0θ′
∈ F0(R′′) for some

nonzero θ′ ∈ L (dQ′,dl′,ψ′d)(Z/L)). Note that we also have f = (fθ)θd−1θ0
θdθ0

∈ F0(R′′).
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Lemma 4.12. F0(R) = F0(R′′)

Proof. Consider some nonzero θ′ ∈ L (dQ′,dl′,ψ′d)(Z/L) and write the products θiθ
′

in terms of the basis θ′′j , so θiθ
′ =

∑N ′′

j=1 cijθ
′′
j . Let K be a countable subfield of

C that contains the cij and the coefficients of a pair of finite homogenous ideal
generators for I(X) and I(X ′′) respectively (for instance, adjoin all these elements
to Q). Let Y, Y ′′ be the affine varieties corresponding to the points of X,X ′′ with
nonzero 0th coordinate (that is, Y = X0, Y

′′ = X ′′0 ). Note that this corresponds to
the image of θ−1

0 (C×) (resp. θ′′−1
0 (C×)). Then, Y and Y ′′ are affine varieties defined

over K. Let y′′ = (y′′i ) be a generic point of Y ′′ over K. Then the isomorphism

K[
θ′′1
θ′′0
, . . . ,

θ′′
N′′
θ′′0

] → K[y′′0 , . . . , y
′′
N ′′ ] sending

θ′′i
θ′′0

to y′′i restricts to an isomorphism

K[ θ1θ0 , . . . ,
θN
θ0

]→ K[y1, . . . , yN ] sending θi
θ0

to yi :=
ci0+

∑
j>0 cijy

′′
j

c00+
∑

j>0 c0jy
′′
j

(using θi
θ0

= θiθ
′

θ0θ′

and the definition of the cij in terms of such products).
Thus K(y1, . . . , yN ) ⊆ K(y′′1 , . . . , y

′′
N ′′) (by construction) and both have tran-

scendence degree over K (dim(X) = dim(Z/L) = dim(X ′′)). Thus it is a finite
algebraic extension. We will show that the two fields are in fact the same. Con-
sider any conjugate K ′ in C of K(y′′1 , . . . , y

′′
N ′′) over K(y1, . . . , yN ), let y′′′i be the

image of y′′i . Then (y′′′1 , . . . , y
′′′
N ′′) is another generic point of Y ′′ over K. Let z′′

and z′′′ be the preimages of (y′′1 , . . . , y
′′
N ′′) and (y′′′1 , . . . , y

′′′
N ′′) in Z/L, so that

y′′j =
θ′′j (z′′)

θ′′0 (z′′)

and

y′′′j =
θ′′j (z′′′)

θ′′0 (z′′′)

for each j. Thus we have for each i

θi(z
′′)

θ0(z′′)
= yi =

θi(z
′′′)

θ0(z′′′)

This implies that z′′ and z′′′ have the same image in Y , and hence z′′ = z′′′, thus
each y′′j = y′′′j and the conjugate K ′ must be K(y′′1 , . . . , y

′′
N ′′) itself. Consequently,

K(y1, . . . , yN ) = K(y′′1 , . . . , y
′′
N ′′), and so each

θ′′j
θ′′0

can be written as a rational

function of polynomials in the θi
θ0

with coefficients in K, so also with coefficients in
C. This proves the lemma.

�

Thus, f ∈ F0(R). But R ⊆ S(d), so F0(R) ⊆ F0(S(d)) = F0(S) (cf. [Igusa,
Lemma 4, Section III.1]), so f ∈ F0(S). As f was arbitrary, we have the reverse
inclusion as well. �

Corollary 4.13. S is finitely generated over C.

Proof. Recall [Igusa, Lemma 8, Section III.1] which asserts that that a graded in-
tegral domain S over a characteristic 0 field K such that S(d) is finitely generated
over K for some d is itself finitely generated over K. We had also [Igusa, Lemma
10, Section III.2] which asserted that (with S again a graded domain over a char-
acteristic 0 field K) if x1, . . . , xn were nonzero elements of Sd for d ≥ 1 such that
S(d) was integral over R := K[x1, . . . , xn] and F0(R) = F0(S(d)) then S(d) would
be finitely generated over K.
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In light of this, it suffices to prove S(d) is finitely generated over C with S as
in the proof of the theorem, as then we would be done by Lemma 8. We showed
in the proof of the theorem that F0(R) = F0(S(d)) where R := C[θ0, . . . , θN ], so it
suffices to show that S(d) is integral over R.

[Igusa, Lemma 11, Section III.2] implies that to show that a θ ∈ Skd for some
k is integral over R it suffices to show that θ

θki
is integral over Ri := C[ θ0θi , . . . ,

θN
θi

]

for each i. Our approach will be to apply the corollary to the denseness of generic
points to the affine variety Y := Xi (nonvanishing of the ith coordinate) where X
is the image of the embedding determined by the θj as in the proof of the theorem

(so that in particular Ri ∼= C[T1, . . . , TN ]�I(Y )). So consider a point y of Y and

a sequence (yn) → y. We may take preimages in Z/L, to get a sequence zn → z.

Then θ
θki

(yn) = θ(zn)
θi(zn)k

, and this is necessarily bounded as θi(z) 6= 0, so all but

finitely many points zn will lie in a closed (hence compact) subspace of Z/L where
θi is nonzero, hence has a nonzero minimum absolute value (and θ has a maximum
absolute value). So from the corollary we see that θ

θki
is integral over the localisation

of Ri at the the maximal ideal corresponding to y. But y was arbitrary and every
maximal ideal corresponds to some y.

The claim then follows as at the end of [Igusa, Section III.2, page 98] it was shown
that if an element of the quotient field of a domain is integral over its localisations
at every maximal ideal, then it is integral over the domain itself. �

5. Divisors and Line Bundles

Recall that in Talk 3 we associated to any complex manifold X a map

M ∗
X�O∗X

(X)→ H1(X,O∗X)

by considering the long exact sequence associated to the short exact sequence

0→ O∗X →M ∗
X →M ∗

X�O∗X
→ 0

We identified the Cech cohomology group Ȟ1(X,O∗X) with isomorphism classes of
holomorphic line bundles (which we called the Picard group, cf. Talk 4) on X,
and so this map can be seen (as we have identified Cech cohomology with (derived
functor) cohomology) as a map assigning to a divisor an isomorphism class of line
bundles. So in this manner we get an injection from the group of line bundles
modulo the relation of linear equivalence (since its kernel is the image of M ∗

X(X),
and we defined linear equivalence to be the equivalence relation generated by it) to
the Picard group.

(M ∗
X/O

∗
X)(X)�∼� H1(X,O∗X)

Remark 5.1. It is a result of Algebraic Geometry that if X is a projective variety,
then this map is an isomorphism, and we get the classical definition of the Picard
group as the group of divisors modulo linear equivalence.

Theorem 5.2. Let X = Z/L be an abelian variety, then the map defined above is
an isomorphism.

(M ∗
X/O

∗
X)(X)�∼

'−→ H1(X,O∗X)
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Proof. It suffices to prove that M ∗
X�O∗X

(X)→ H1(X,O∗X) is a surjection. In light

of the (subsequence of the) long exact sequence in cohomology

. . .→M ∗
X(X)→M ∗

X�O∗X
(X)→ H1(X,O∗X)→ H1(X,M ∗

X)→ . . .

We need only show that the map H1(X,O∗X)→ H1(X,M ∗
X) is the zero map. This

is precisely the map induced on H1 by the inclusion O∗X � M ∗
X , and we may

describe it on the level of Cech cohomology.
Recall that when a line bundle L corresponded to a Cech-cocycle (gij) with

respect to a cover U (i.e, represented by a class in Ȟ1(U,O∗X)), the gij could be seen
as “transition functions” for a local trivialisation of L with respect to U. The point
to be made is that the property of being a coboundary (boundary of a 0-cocycle)
can be seen as the existence of a “holomorphic section”, that is local holomorphic
functions (so local sections of L under the trivialisation isomorphisms) that are
compatible with the transition functions. But algebraically, the criterion for the
image of the cocycle in Ȟ1(U,M ∗

X) to be a coboundary is formally identical.

But in light of the isomorphism between Ȟ1(X,O∗X) and H1(Z,O∗Z(Z)) we may
state this in terms of a factor of automorphy u for L, we must prove that there
is a nonzero meromorphic function f ∈ M ∗

Z(Z) such that f(z + l) = f(z)u(l, z)
for z ∈ Z, l ∈ L (call such an f a “meromorphic section” in analogy with the
“holomorphic sections”, the theta functions).

Let H ′ be a positive definite Riemann form for the abelian variety X with respect
to L. We know from Talk 4 that L ∼= L(H,χ) for an Appell-Humbert datum (H,χ),
and there exists a semicharacter χ′ such that (H ′, χ′) is an Appell-Humbert datum
as well.

Our strategy is as follows, we will construct such an f as a ratio of theta functions
(this is similar to what we did in the previous section, and we will use a similar
approach as well). Our trick is to use the following lemma, which will allow us to
construct Appell-Humbert data with positive definite forms.

Lemma 5.3. Let A and B Hermitian matrices and let A be positive definite. Then
there exists an invertible matrix T such that T ∗AT = I and T ∗BT is a diagonal
matrix.

Proof. This is the statement of [Prasolov-LinAlg, Theorem 20.1] �

Corollary 5.4. There is an integer k such that in the Appell-Humbert datum

(H̃, χ̃) := (H,χ) + k(H ′, χ′) = (H + kH ′, χχ′k)

the form H̃ is positive definite.

Proof. Translating the statement to one about forms (with A = H ′, B = H), we
see that there is a basis of Z (determined by the factor T ), such that if we denote
the coordinates of points z, y by zi, yj with respect to that basis, we have

H ′(y, z) =

g∑
i=1

yiz̄i

H(y, z) =

g∑
i=1

diyiz̄i

for some real d1, . . . , dg. Any k whose magnitude is greater than the smallest of the
di will do the trick. �
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Recall that for an Appell-Humbert datum (H,χ) with H positive definite (and
hence A := Im(H) is non-degenerate, in fact we have seen that the two notions are
equivalent for a Hermetian form H; See [Igusa, Section II.3]) the space L (H,l)(X)
is non-zero (recall from Theorem 1.1 of Talk 6 that for an Appell-Humbert datum
(H,χ) this is equivalent to H being positive-semidefinite and χ being strongly asso-
ciated to A := Im(H), which for instance is immediate when A is non-degenerate.).

So we may take nonzero theta functions θ̃ ∈ L (H̃,χ̃)(X), θ′ ∈ L (kH′,χ′k)(X).

Recall that the factor of automorphy associated to L (H,χ)(X) can be written as

u(l, z) = χ(l)eπ(H(z,l)+
H(l,l)

2 ). Set f := θ̃
θ′ , then for z ∈ Z, l ∈ L:

f(z+l) =
θ̃(z + l)

θ′(z + l)
=

θ̃(z)χ̃(l)eπ(H̃(z,l)+
H̃(l,l)

2 )

θ′(z)χ′k(l)eπ(kH′(z,l)+
kH′(l,l)

2 )
= f(z)χ(l)eπ((H̃−kH′)(z,l)+ 1

2 (H̃−kH′)(l,l))

= f(z)χ(l)eπ(H(z,l)+
H(l,l)

2 )

as desired. �
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