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ON A CHARACTERIZATION OF HIGHER SEMIADDITIVITY

AREEB S.M.

Abstract. In [HopLur13], M. Hopkins and J. Lurie introduce for m ¥ �2, a notion
of m-semiadditivity. This generalizes the classical notion of a semiadditive (infinity)
category. Intuitively, m-semiadditive infinity categories are those in which limits and
colimits of diagrams indexed by m-finite spaces (that is, m-finite infinity groupoids) are
canonically equivalent. In [Har20], Y. Harpaz proves a universal property of the infinity
category of spans of n-finite spaces with m-truncated wrong way maps. This is used to
establish an equivalent characterization of m-semiadditivity in terms of a well behaved,
essentially unique action of this category of spans. This has the advantage of not only
providing a more succinct method of detecting m-semiadditivity, but also providing a
versatile structure to work with m-semiadditive infinity categories. In this thesis, we
survey this sequence of results.
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Introduction

A 1-category C is called semiadditive when it is pointed, and for all finite families of
objects tXiuiPI , the map

²
iPI Xi Ñ

±
iPI Xi “represented by the diagonal matrix”1 is

invertible. Deconstructing this definition, this is asking that:

(1) The category C is pointed, that is, the map HÑ � is invertible.
(2) For all diagrams in C indexed by finite discrete categories, the canonical map

induced by the diagonal matrix from the colimit to the limit is invertible.

The second condition takes the form of asking that for all diagrams in C indexed by a
specified class of categories, there is a “canonical map” from the colimit to the limit that
has to be invertible. The first condition is also of this form, the class of categories here
just being the singleton comprising of the initial category.

Remark 0.1. The second condition is not strictly well-defined without the first condition
in context, as we need the notion of zero maps to even define the “map induced by the
diagonal matrix”. However, the first is also an instance of the second, as we may take
the finite indexing set to be empty.

So far our indexing categories have all been discrete2. We now look for a notion of
higher semiadditivity, for which we expand our class of index categories.

Our first pathology occurs when we consider index diagrams with non-invertible mor-
phisms. For instance, if we consider the simplest such example, ∆1 and a pointed category
C, the colimit of an arrow ∆1 Ñ C is its target, and its limit is its source. The canonical
map from the colimit to the limit, which we will henceforth call the “Norm map” will
in fact turn out to be just the zero map. Therefore, asking for the norm maps to be
equivalences in such cases excludes most of our cases of interest, and we will therefore
restrict to indexing diagrams that are infinity groupoids (or equivalently, spaces).

For similar reasons, we will require that our indexing infinity groupoids are π-finite,
that is, that they have finitely many components (finite π0) and that each homotopy
group is finite as well. Indeed, even abelian categories and stable infinity categories, the
standard examples of semiadditivity have infinite products and coproducts that differ in
general.

Finite sets are the prototypical 0-finite spaces3, that is, infinity groupoids with finitely
many connected components and no n-morphisms for nonzero n. One can define in
the same manner the notions of pointed and semiadditive infinity categories. Then, as
limits and colimits of functors between nerves of 1-categories are computed in the 1-
categorical sense, a 1-category is pointed or semiadditive if and only if it is so as an
infinity category. We call the property of semiadditivity henceforth 0-semiadditivity, the
property of colimits and limits of diagrams indexed by 0-finite spaces coinciding.

The p�1q-finite spaces are the empty space and the contractible ones. As the limit and
colimit of a diagram with contractible source can both be computed as the image of any
point, they are identified by the identity. Consequently, we can think of being pointed as
“p�1q-semiadditivity”. Similarly, as the p�2q-finite spaces are the contractible ones, we
can say that every infinity category is “p�2q-semiadditive”.

The work of Hopkins and Lurie in [HopLur13, Section 4] introduces for each m, a
notion of m-semiadditivity. Intuitively, a category is m-semiadditive if for every diagram

1That is, the map
²
iPI Xi Ñ

±
iPI Xi determined by the composite Xi Ñ

²
iPI Xi Ñ

±
jPI Xj Ñ Xj

being the identity if i � j and the zero map otherwise.
2As limits and colimits are invariant under equivalences of the indexing diagrams, we can say the same

for indexing categories that are disjoint unions of contractible ones.
3For every integer m ¥ �2, there is a notion of an m-finite space (recalled later on).
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in it indexed by an m-finite space, there is a “Norm map” from its colimit to its limit
that is an equivalence.

This notion is developed inductively. What is really provided is for each n, a criterion
for an n-semiadditive infinity category to be pn � 1q-semiadditive. In particular for a
diagram indexed by an n-finite space, to even define the norm map that we wish to be an
equivalence in the infinity category we consider, it is assumed that the infinity category
is pn� 1q-semiadditive.

In [Har20], Harpaz proves a universal property of a class of infinity category of spans.
To be precise, it is shown that the infinity category of spans n-finite spaces with m-
truncated wrong way maps is the free m-semiadditive category with colimits indexed
by n-finite spaces generated by a point. In particular, the infinity category of spans of
n-finite spaces is the free n-semiadditive infinity category, generated by a point.

The Cartesian symmetric monoidal structure on spaces induces a symmetric monoidal
structure on the category of spans of n-finite spaces, which can be shown to preserve
colimits indexed by n-finite spaces. Harpaz uses the universal property of the infinity
category of spans of n-finite spaces to show that the property of n-semiadditivity is
equivalent to the existence of a colimit compatible action of the category of spans of
n-finite spaces.

The equivalence of these characterizations is useful in practice, while n-semiadditivity
is a property of an infinity category, the action of the span category provides a useful
structure to work with n-semiadditive infinity categories.

1. Spans in infinity categories

1.1. The definition of a span.

Definitions 1.1. A span (or correspondence) in an infinity category C is a diagram of
the form

Z

X Y

Thinking of infinity categories as quasicategories, a span in an infinity category is a Λ2
0

shaped diagram (where by Λn
k we mean the k-th horn in the standard n-simplex ∆n).

If we distinguish X as the source and Y as the target, we call such a diagram a span
from X to Y and call the Z Ñ X map the wrong way map. For convenience, we also call
the Z Ñ Y map the right way map.

More generally, if K � C1 is a class of morphisms (1-simplices) of C, we will call a span
in C a span in pC, Kq if the wrong way map lies in K.

Remark 1.2. The notion of spans is due to Yoneda([Yon54]) and Bénabou([Bén67]). One
may recognize spans as being the diagram whose colimit gives pushouts, or as giving the
morphisms in a calculus of fractions.

A third application of spans is its use in describing “push-pull” behavior. A prototypical
example is that one has for a suitable pair pC, C:q of an infinity category C and a subcat-
egory C:, a functor F : C Ñ D for some infinity category D and a functor G : C:op

Ñ D,
such that G and F agree on objects. One then hopes to construct a functorial assignment
taking a span

Z

X Y

g f
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To the morphism

GX Gg
ÝÑ GZ � FZ Ff

ÝÝÑ FY
We will work extensively with an instance of such a construction in our characterization
of semiadditivity.

1.2. Constructing an infinity category of spans. We would like to define an infinity
category of spans in pC, Kq. More precisely, we want an infinity category with objects
that of C but 1-morphisms from an object X to an object Y to be given by spans from
X to Y in pC, Kq. The content of this section is primarily taken from [Har20, §2.1]. The
definitions are as in [Bar13].

Remark 1.3. We will work primarily with the model of quasicategories, despite trying
to remain stylistically model agnostic. However, a subcategory K of a quasicategory C
is a genuine sub-simplicial set. It will be convenient for us to work with an equivalence
invariant notion, so we recall the following definition.

Definitions 1.4. Call a morphism f : xÑ y in an infinity category C is a monomorphism
when the canonical commutative square

X X

X Y

1X

1X

f

f
{

is cartesian.
A functor F : C Ñ D between infinity categories is faithful when for each pair of

objects X, Y of C, the induced map CpX, Y q Ñ DpFX,FY q is a monomorphism in a
(suitably large) infinity category of spaces. In other words, every (homotopy) fiber of
CpX, Y q Ñ DpFX,FY q is contractible (intuitively, every morphism FX Ñ FY has an
essentially unique preimage) or empty (Every morphism FX Ñ FY has no preimage).

If there is a faithful functor F : C Ñ D, we call C a subcategory of D and perform an
abuse of notation by writing C � D or C � D (leaving F implicit).

Remarks 1.5. It can be shown that a C Ñ D is faithful if and only if it defines an
equivalence of C onto a subcategory on the nose (in the sense of being a sub-simplicial
set) of D.

In fact, it can also be shown that a F : C Ñ D is faithful precisely when the induced
functor hoF : ho C Ñ hoD on homotopy 1-categories is faithful, and the commutative
square

C D

ho C hoD

F

hoF

h
{

is homotopy cartesian (where we have performed the standard abuse of notation of writing
A for the infinity category which is a nerve of a 1-category A).

Definition 1.6. A subcategory C � D is called wide when the inclusion induces an
equivalence C�

� D�
on maximal sub-groupoids.

A morphism f of D is then said to belong to C (denoted f : C) if it is isomorphic in
the arrow category Funp∆1,Dq to a morphism in (the image of) Funp∆1, Cq.

Notation 1.7. Given an infinity category C and a wide subcategory A, we call a span
in C a pC,Aq-span if the wrong way map belongs to A.
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The composition of a pair of spans in an infinity category C from X to Y and Y to Z

A B

X Y Z

is given by forming the pullback C :� A�Y B and taking the outermost span in

C

A B

X Y Z

{

We will define an infinity category SpanpC, Kq such that the composition of 1-morphisms
takes place in precisely this manner, and will require that the wrong way map in the
composite also belongs to K. The following definition ensures this.

Definition 1.8. A weak CoWaldhausen structure on an infinity category C is a wide
subcategory C:, such that any diagram in C

X

B Y

f

v

where the map f belongs to C:, fits into a pullback square

A X

B Y

u

g f

v

{

in C, such that the map g belongs to C: as well.
A weak CoWaldhausen infinity category is a pair pC, C:q, of an infinity category C and

a weak CoWaldhausen structure C: on C.

Remark 1.9. The property of a wide subcategory C: of C being a weak CoWaldhausen
structure guarantees that every pair of spans in pC, C:q such that the target of the first
is the source of the second has a “composition” in pC, C:q in the aforementioned sense.
Indeed, given a weak CoWaldhausen infinity category pC, C:q, one can define an infinity
category of spans in pC, C:q which satisfies the properties we expect.

Examples 1.10. For any infinity category C, the maximal sub-groupoid C�
is the minimal

weak CoWaldhausen structure on C.
When C has pullbacks, then C itself defines the maximal weak CoWaldhausen structure

on C.

Construction 1.11. Given an infinity category C and a subcategory E of ho C, we
construct a subcategory CE of C by forming the pullback

CE C

E ho C

{
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Let F � C1 be a “class of fibrations”, that is a class of 1-morphisms containing all equiv-
alences, closed under compositions, such that pullbacks along morphisms in F exist in C
and further, F is closed under pullbacks. Then applying this construction to the subcat-
egory of ho C defined by F (necessarily containing all objects) produces a CoWaldhausen
structure on C. Our primary examples will be constructed in this manner.

Notation 1.12. When A � C0 is a family of objects of an infinity category C, we will
denote by CA the full subcategory of C obtained by applying the above Construction 1.11
to the full subcategory of ho C spanned by A.

We will construct our desired SpanpC, C:q as a quasicategory. We have already decided
that the 0-simplices are the objects of C and the 1-simplices are given by spans in C whose
wrong way maps belong to C:. Intuitively, an n-simplex in a quasicategory is the data of
a composition of the n morphisms determined by the restriction to the spine. Recalling
the manner in which spans compose, an n-simplex of SpanpC, C:q should correspond to a
diagram of pullbacks in C of the form

X0,n

X1,n X0,n�1

X2,n X1,n�1 X0,n�2

X3,n X2,n�1 X1,n�2 X0,n�3

Xn,n X0,0

{

{ {

{{{

such that all the wrong way maps (the ones of form Xi,j Ñ Xi�1,j) all belong to C:.
We will proceed to turn this into a definition.

Definition 1.13. Recall that for an infinity category C, the Twisted Arrow Category
is the infinity category TwpCq whose n-simplices are given by maps ∆nop

� ∆n Ñ C of
simplicial sets, and the action of simplicial operators given by pre-composition. This is
functorial in C by post-composition.

Furthermore, if C is (the nerve of) a 1-category, then TwpCq is the 1-category with
objects given by 1-simplices of C and morphisms f Ñ g given by commutative diagrams

a b

c d

f

g

vu

in C. In particular, Twp∆nq is the poset with elements tpi, jq P rns � rns | i ¤ ju and
order relation pi, jq ¤ pi1, j1q if and only if i1 ¤ i ¤ j ¤ j1.

Warning 1.14. Some authors call this construction the Twisted Diagonal, and call its
opposite the Twisted Arrow Category. Despite the fact that we will in fact in our con-
struction ourselves use the opposite TwpCqop, we state the definitions as such to remain
consistent with [Har20] and [Bar13].

Definition 1.15. For a weak CoWaldhausen infinity category pC, C:q, we call a map of
simplicial sets f : Twp∆nqop Ñ C Cartesian if each morphism pi, jq Ñ pi1, j1q in Twp∆nq
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(that is, whenever i1 ¤ i ¤ j ¤ j1) induces a Cartesian square

fpi1, j1q fpi1, jq

fpi, j1q fpi, jq

{

such that the vertical (dashed) maps belong to C:.
Let FunpTwp∆nqop, Cq

�,:
be the full subcategory of FunpTwp∆nqop, Cq spanned by the

Cartesian maps.

Remark 1.16. As a map out of (the nerve of) a poset is determined by its restriction to
the finite totally ordered subsets, a Cartesian Twp∆nqop Ñ C corresponds to a “pyramid
of pullbacks” as in the discussion on the n-simplices of SpanpC, C:q. The higher simplices
of Twp∆nq encode the remaining coherence data.

Definitions 1.17. For a weak CoWaldhausen infinity category pC, C:q, let Q�pC, C:q be
the simplicial simplicial set (simplicial set valued presheaf of ∆) given by the assignment

n ÞÑ FunpTwp∆nqop, Cq�
�,:

Let SpanpC, C:q denote the simplicial set obtained by taking the vertices at each level.

Observation 1.18. SpanpC, C:q can be described as the simplicial set whose n-simplices
are the Cartesian maps Twp∆nqop Ñ C, and the simplicial operators act by pre-composition.

Theorem 1.19. (Barwick; cf. [Bar13, Proposition 3.4 - Definition 3.8]) Let pC, C:q
be a weak CoWaldhausen infinity category . Then Q�pC, C:q is a complete segal space.
Consequently, the simplicial set SpanpC, C:q is a quasicategory, the infinity category of
pC, C:q-spans.

Observation 1.20. We have (unique) isomorphisms Twp∆0q � ∆0 and

Twp∆1q � Npp0, 0q Ñ p0, 1q Ð p1, 1qq � Λ2
2

Consequently, SpanpC, C:q has objects given by the objects of C and 1-morphisms given by
pC, C:q-spans, as desired.

Notation 1.21. For an infinity category C and objects x, y of C, we denote by MapRC px, yq
the fiber

MapRC px, yq
Cäy

� Cx

l

{

It is a Kan-complex as pullbacks of left fibrations are left fibrations, and left fibrations
with target infinity groupoids are Kan fibrations (cf. [Cis19, Proposition 3.5.5]).

There is a canonical equivalence of infinity groupoids (cf. [Cis19, Corollary 5.6.14])

MapRC px, yq � HomCpx, yq

Proposition 1.22. Given a sequence C̃ � C: � C of weak CoWaldhausen structures on an
infinity category C with finite products, the mapping space SpanpC, C̃qpX, Y q is equivalent
to the full subcategory of SpanpC, C:qpX, Y q consisting of the spans whose wrong way maps
belong to C̃.
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Proof. Recall that the quasicategories SpanpC, C̃q and SpanpC, C:q underlie the complete
segal spaces Q�pC, C̃q and Q�pC, C:q. We have full subcategory inclusions

QnpC, C̃q � QnpC, C:q � FunpTwp∆nqop, Cqop

�

given by taking full subcategories spanned by diagrams with wrong way maps belonging
to C̃ (resp. C:). We will show that the map SpanpC, C̃q� SpanpC, C:q is a monomorphism
of infinity categories.

Lemma 1.23. Let A and B be quasicategories underlying complete segal spaces A� and
B�. Then, a morphism A� Ñ B� is a monomorphism of complete segal spaces if and only
if the induced AÑ B is a monomorphism of infinity categories.

Proof. A morphism A� Ñ B� is a monomorphism if and only if for each level n we have
a Cartesian square of spaces

An An

An Bn

{

Thus, one essentially has a Cartesian square on passing to vertices and hence a similar
Cartesian square of infinity categories

A A

A B

{

Conversely, if AÑ B is a monomorphism, we have on exponentiating and taking maximal
subgroupoids for each n a Cartesian square

Funp∆n, Aq
�

Funp∆n, Aq
�

Funp∆n, Aq
�

Funp∆n, Bq
�

{

For a complete segal space X� corresponding to the quasicategory X, we have canonical
identifications Xn � Funp∆n, Xq

�
. Thus the above Cartesian square implies that for each

n,

An An

An Bn

{

is cartesian, and hence A� Ñ B� is Cartesian, as desired. �

As the inclusions QnpC, C̃q � QnpC, C:q of full subcategories are monomorphisms, it
thus follows from the lemma that SpanpC, C̃q Ñ SpanpC, C:q is a monomorphism. We thus
have a Cartesian square of infinity categories

SpanpC, C̃q SpanpC, C̃q

SpanpC, C̃q SpanpC, C:q

{
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This is compatible with exponentiation and fibers. In particular on exponentiating by
∆1 and taking fibers over pa, bq, one gets a Cartesian square of mapping spaces

SpanpC, C̃qpX, Y q SpanpC, C̃qpX, Y q

SpanpC, C̃qpX, Y q SpanpC, C:qpX, Y q

{

So SpanpC, C̃qpX, Y q Ñ SpanpC, C:qpX, Y q is a monomorphism in spaces. This means that
the map is essentially an inclusion of connected components, that is we have a Cartesian

SpanpC, C̃qpX, Y q SpanpC, C:qpX, Y q

π0SpanpC, C̃qpX, Y q π0SpanpC, C:qpX, Y q

{

In our case, the connected components in question are those whose wrong way maps be-
long to C̃, so SpanpC, C:qpX, Y q is precisely the claimed full subcategory of SpanpC, C:qpX, Y q.

�

Corollary 1.24. Given a sequence C̃ � C: � C of weak CoWaldhausen structures on an
infinity category C with finite products, the canonical functor SpanpC, C̃q � SpanpC, C:q
is a subcategory inclusion (as simplicial sets, even).

In particular, C � SpanpC, C�
q can be seen as a subcategory of SpanpC, C:q for any weak

CoWaldhausen infinity category pC, C:q.

Proof. The maps act as the identity on objects, so it suffices to prove that the induced
functor on mapping spaces is a full subcategory inclusion. This is however just the
conclusion of Proposition 1.22. �

Definition 1.25. Consider a weak CoWaldhausen infinity category pC, C:q and a span λ

Z

X Y

g f

from X to Y whose legs both belong to C:. Then we define its dual, denoted pλ to be the
span

Z

Y X

f g

Proposition 1.26. Consider a weak CoWaldhausen infinity category pC, C:q. Then for a

space K, there is a weak CoWaldhausen structure
�
CK
�:

on CK consisting of morphisms

of functors that are object-wise in C:. Further, we have a canonical identification

SpanpC, C:qK � SpanpCK ,
�
CK
�:
q

Proof. Let pC, C:q be a weak CoWaldhausen infinity category and K an infinity groupoid.

Let
�
CK
�:
�
�
CK
�

1
be the subset of morphisms of functors K � ∆1 Ñ C such that the

component at each object of K lies in C:.
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Consider a cospan

X

B Y

:pCKq
:

such that the map X Ñ Y belongs to
�
CK
�:

. For each object of k, there is a Cartesian

Ak XK

Bk YK

:C::C:
{

in C such that the pullback Ak Ñ Bk belongs to C:. These pullbacks assemble into a
Cartesian diagram in CK

A X

B Y

:pCKq
:

:pCKq
:{

and hence :
�
CK
�:

is indeed a weak CoWaldhausen structure on CK .

Now, the complete segal space Q�pCK ,
�
CK
�:
q corresponding to SpanpCK ,

�
CK
�:
q is such

that QnpCK ,
�
CK
�:
q is the full subcategory of FunpTwp∆nq

op
, CKq� spanned by the Carte-

sian morphisms. In light of the identification FunpTwp∆nq
op
, CKq � FunpK, FunpTwp∆nq

op
, Cqq,

it corresponds to the full subcategory of FunpK, FunpTwp∆nq
op
, Cqq� of functors that are

object-wise Cartesian with respect to pC, C:q. That is,

QnpCK ,
�
CK
�:
q � FunpK, FunpTwp∆nq

op

, Cq
�,:
q
�

� FunpK,QnpC, C:qq
�

(the last equality being a consequence of the fact that if K is an infinity groupoid,
FunpK,Xq

�
� FunpK,X

�
q
�

)
We have canonical equivalences Funp∆n, SpanpC, C:qq� � QnpC, C:q � FunpTwp∆nq

op
, Cq�

�,:

for each n, so canonical infinity categorical equivalences

FunpK, FunpTwp∆nq
op

, Cq
�,:
q
�

� FunpK, FunpTwp∆nq
op

, Cq�
�,:
q
�

� FunpK, Funp∆n, SpanpC, C:qq�q�

This can be further rewritten as

FunpK, Funp∆n, SpanpC, C:qq�q� � FunpK, Funp∆n, SpanpC, C:qqq� � Funp∆n,FunpK, SpanpC, C:qqq�

As QnpCK ,
�
CK
�:
q � Funp∆n, SpanpCK ,

�
CK
�:
qq

�
canonically as well, we have functorial

identifications

Funp∆n, SpanpCK ,
�
CK
�:
qq

�

� Funp∆n,FunpK, SpanpC, C:qqq�

that is

HomCat8p∆
n, SpanpCK ,

�
CK
�:
qq � HomCat8p∆

n,FunpK, SpanpC, C:qqq
functorially in n. It follows that we have indeed an equivalence

SpanpCK ,
�
CK
�:
q � FunpK, SpanpC, C:qq

as desired. �

Proposition 1.27. Consider a weak CoWaldhausen infinity category pC, C:q and ob-
jects X, Y of C, such that C has finite products. There is a canonical identification

of HomSpanpC,C:qpX, Y q with the full subcategory of
�
CäpX � Y q

	�
spanned by maps

Z Ñ X � Y such that the projection to X belongs to C:.
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Notation 1.28. For an infinity category C and an object X, we denote by C}
X

the fat

slice or alternative slice, the fiber of ev : Funp∆1, Cq Ñ C at X. It is canonically equivalent

to the so called regular slice CäX as infinity categories over X.

Proof. Denote by
�
CäpX � Y q

	�
;

the aforementioned full subcategory, and by
�
CäX

	
:

the full subcategory of CäX spanned by the morphisms Z Ñ X that belong to C:. Then,

the canonical equivalence of infinity categories CäpX � Y q �
CäX �C

CäY restricts

to �
CäpX � Y q

	�
;
�
�
CäX

	�
:
�C�

CäY

�

The equivalence CäX � C}
X

restricts to one of
�
CäX

	
:

onto the similarly defined�
C}
X

	
:
. To summarize, we have a canonical equivalence�

CäpX � Y q

	�
;
�
�
C}
X

	�
:
�C�

C}
Y

�

Furthermore, the Cartesian squares (in particular fiber sequences) defining the fat slices
assemble into a Cartesian square�

C}
X

	
:
�C

C}
Y

Funp∆1, Cq: �C Funp∆
1, Cq

� C � C

{

ev1�ev1

pX,Y q

So that
�
CäpX � Y q

	�
;

can be identified with the maximal subgroupoid of the fiber

above.
Now, SpanpC, C:qpX, Y q � tpX, Y qu �SpanpCq��SpanpCq� Funp∆1, SpanpC, C:qq� . Again,

we can use our canonical equivalence Funp∆1, SpanpC, C:qq� � FunpTwp∆1q
op
, Cq�

�,:
. As

Twp∆1q
op
� Λ2

0 � ∆1
²

t0u ∆1, we have that

FunpTwp∆1q
op

, Cq�
�,:
� FunpTwp∆1q

op

, Cq�
:
� Funp∆1, Cq�: �C� Funp∆1, Cq�

where Funp∆1, Cq�: is the full subcategory of Funp∆1, Cq� spanned by arrows in C belonging

to C:. This fits into a diagram

Funp∆1, Cq�: �C� Funp∆1, Cq� Funp∆1, SpanpC, C:qq�

C�
� C�

SpanpC, C:q� � SpanpC, C:qq�

�

ev1�ev1 ev0�ev1

As C�
� C�

� SpanpC, C:q� � SpanpC, C:q� is monic, we can identify (up to equivalence
of infinity categories) the fibers�

CäpX � Y q

	�
;
� tpX, Y qu �C��C�

�
Funp∆1, Cq�: �C� Funp∆1, Cq�

�
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with

tpX, Y qu �SpanpC,C:q��SpanpC,C:q�
�
Funp∆1, Cq�: �C� Funp∆1, Cq�

�
� SpanpC, C:qpX, Y q

(The last equivalence being a consequence of both sides being equivalent to the fiber
tpX, Y qu �SpanpC,C:q��SpanpC,C:q� Funp∆1, SpanpC, C:qq�) �

Proposition 1.29. Consider a weak CoWaldhausen infinity category pC, C:q. A 1-morphism
of SpanpC, C:q seen as a span in C is invertible if and only if its legs are invertible.

Proof. Let X
p
ÐÝ Z

q
ÝÑ Y be a span (from X to Y ) with invertible legs. One computes

that if p�1 is an inverse to p and q�1 to q, then the composite

Y �Z X

Y X

Y Z X
q�1 p�1

{

is an inverse in SpanpC, C:q. Thus, every such span is an equivalence in SpanpC, C:q. It
suffices to show that every equivalence in SpanpC, C:q is represented by a span with both
legs invertible.

To see this (we follow the proof of [Hau18, Lemma 8.2]), consider a span X
p
ÐÝ Z

q
ÝÑ Y

with inverse Y
u
ÐÝ W

v
ÝÑ X. Then there are witnesses to the composition being identity,

i.e. 2-morphisms

X

Z W

X Y X

u1 q1

p q u v

{1X 1X

Y

W Z

Y X Y

p1 v1

u v p q

{1Y 1Y

Consider the case for p, the other case of showing that q is invertible is dual. p has a
section u1, it suffices to show that p has a retract as well. Consider the diagram

Z Y Z

X W X

r v1

p

q1 v

pp1

1X

1Z

{

The outer square is just the identity morphism of p, so Cartesian, hence the inner left
square is as well. Thus there is a witness to the composition

pX
p
ÐÝ Z

q
ÝÑ Y q � pY

u
ÐÝ W

v
ÝÑ Xq � pX

p
ÐÝ Z

q
ÝÑ Y q � pX

p
ÐÝ Z

q
ÝÑ Y q
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given by a diagram

Z

X Y

Z W Z

X Y X Y

p1 v1

u v p q

{

qp

u1 q1

p r
{

{

p q

in particular, we have a diagram of pullbacks

Z X Z

Y W Y

pu1

r

p1u

q q1

{{

1Y

So that the witnessed composition u1 � p is an equivalence. Thus, p has a retract as well,
so is an equivalence as desired. �

Theorem 1.30. Let C: be a weak CoWaldhausen structure on an infinity category C with
finite limits. Then, the Cartesian symmetric monoidal structure on C induces a natural
symmetric monoidal structure on SpanpC, C:q that acts via cartesian products “‘levelwise”
(however it is not the cartesian symmetric monoidal structure in general).

Proof. Assertion (iv) of [Hau18, Theorem 1.2] is in fact a generalization of this statement
to p8, nq-categories of spans. �

2. The infinity categories Smn
2.1. Recollection: n-finite spaces.

Notations 2.1. We denote by S the infinity category of spaces (or infinity groupoids)
defined with respect to some implicit universe.

We also denote for n ¥ �1 the n-sphere Sn P S. We have defined S�1 to be the initial
object H in order to be consistent with the pushout diagrams

Sn �

� Sn�1

{

in S for n ¥ �0.

Remark 2.2. While the notion of an n-finite space was introduced much earlier, the
sequence of results generally follows [Har20] here as well. However (particularly in the
proofs) we have made at points as a matter of personal preference minor changes, and
more extensive (albeit longer) explanations.

Definition 2.3. For n ¥ �2, we call a space X P S n-truncated if the diagonal map
X Ñ XSn�1

is an equivalence of spaces (weak homotopy equivalence).
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A map X Ñ Y of spaces is n-truncated when each (homotopy) fiber is n-truncated.
A space is n-finite if it is n-truncated and all its homotopy sets are finite. We call a

space π-finite if it is n-finite for some n.

Observation 2.4. A space is p�2q-truncated if and only if it is contractible. A space is
p�1q-truncated precisely when either it is H or contractible.

Further, an application of the long exact sequence of homotopy groups shows that a
space X is n-truncated for n ¥ 0 if and only if for each basepoint x P X and i ¡ n, the
homotopy group πipX, xq is zero.

Remark 2.5. With these definitions, Definitions 1.4 of a faithful functor can be restated
as a functor F : C Ñ D such that for each pair of objects X,X P C, the action on Hom
spaces, HomCpX, Y q Ñ HomDpFX,FY q is p�1q-truncated.

Notation 2.6. For �2 ¤ m ¤ n, let Sn � S denote the full subcategory spanned
by the n-finite spaces, and let Sn,m � S denote the subcategory of n-finite spaces and
m-truncated maps between them (in the sense of Construction 1.11 above).

Definition 2.7. For n ¥ �2, denote by κn a set of weak homotopy equivalence classes of
n-finite spaces. We will say that a category admits (resp. a functor preserves) n-finite or
κn-(co)limits when it admits (resp. preserves) (co)limits of diagrams indexed by n-finite
spaces, or equivalently elements of κn.

Observation 2.8. Fiber products of n-finite spaces are n-finite. Consequently, the full
subcategory Sn � S has pullbacks (so finite limits, even), and these are computed as
pullbacks in S itself.

Proposition 2.9. For n ¥ �2, Sn has n-finite colimits, which are preserved and detected
(or reflected) by the subcategory inclusion Sn � S.

Proof. As Sn is a full subcategory of S, the proposition will follow if we show that Sn is
closed under n-finite colimits of n-finite spaces in S.

Consider an arbitrary diagram F : X Ñ Sn, with X an n-finite space. Recall that
we have a higher Grothendieck correspondence between functors out of an X valued in
spaces and left fibrations over X (cf. [Cis19, §5.2, in particular Corollary 5.2.8]). The map
F , thought of as a functor X Ñ S classifies a Kan-fibration p : E �Kan X (a corollary
of Joyal’s coherence/lifting theorem is that a left fibration whose target is an infinity
groupoid is a Kan-fibration, cf. [Cis19, Proposition 3.5.5]).

Lemma 2.10. Consider a diagram F : X Ñ S, classifying a Kan-fibration p : E �Kan X.
The colimit of F is the homotopy type of the total space E.

Proof. We can think of the colimit functor FunpX,Sq Ñ S as the left Kan extension
π! : FunpX,Sq Ñ Funp�,Sq � S along the map to the terminal object π : X Ñ �.

In terms of left fibrations, this can be computed by forming a diagram (cf. [Cis19, dual
of Proposition 6.1.14]):

E Ẽ

X �

p

π

cofinal

by factoring the composite E Ñ X Ñ � into a cofinal/initial map and a left fibration.
Then, π!F is the homotopy type of Ẽ.

In our case, X �Kan � is a Kan-fibration, so no factorization is required and we directly
compute π!F as the homotopy type of Ẽ :� E. �
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In light of the lemma, it suffices to show that the total space E is also n-finite. By
assumption, the fiber of p at an object x has the homotopy type Fx � Fpxq, which is
n-finite. As the total space of a Kan-fibration, with both total space and fiber n-finite, it
is therefore the case that E is also n-finite (by the long exact sequence in homotopy). �

Corollary 2.11. The colimit of a diagram X Ñ Sn for an n-finite space X is also given
by the homotopy type of the Kan-fibration it classifies.

Construction 2.12. For a space X P S, there is a canonical cocone (denoted pixqxPX , or
when X is clear from context simply pixq) establishing X as the colimit of the constant
X-indexed diagram in S with value the terminal object �. We will also write ix for the
cocone map associated to x P X.

Intuitively, this is the inclusion of each point x, ix : � � txu � X. More formally, the
cocone �X Ñ XX is the morphism in FunpX,Sq corresponding to the morphism of left-
fibrations over X from 1X (which classifies the constant functor at �) to π1 : X �X Ñ X
(which classifies the constant functor with value X) given by

X X �X

X

π1
1X

δX

(Observe that the fiber over x P X literally does pull out the map � Ñ X with value x)

Proposition 2.13. The cocone pixq of Construction 2.12 establishes X as the colimit of
the constant X-indexed diagram with value �.

Proof. Denoting by π again the map X Ñ � and π� : S � Funp�,Sq Ñ FunpX,Sq the
pullback along π, we can identify �X � π�p�q and YX � π�pY q for Y P S. If Y � π!pπ

�p�qq
is the colimit of �X , then the colimit cocone is just the component of the unit map
1 Ñ π�π! of the adjunction π! % π� at π�p�q.

If, for a F : X Ñ S and f : X Ñ X 1, f!F is computed by forming the diagram

E Ẽ

X X 1

p q

f

cofinal

and taking the functor X 1 Ñ S classifying q, then the unit map F Ñ f�f!F corresponds
to the induced map E Ñ X �X 1 Ẽ of left fibrations over X.

In our case, the diagram is

X X

X �

p

π

1X

and thus we get precisely the map claimed. �

Notation 2.14. Consider a map p : E Ñ X of quasicategories (or simplicial sets, even).
For an object x P X, we define

Eäx
Xäx

E X

p{x

p

{
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Furthermore, for a functor F : E Ñ C, we denote by Fäx the composite

EäxÑ E
F
ÝÑ C

Lemma 2.15. (Pasting) Consider a pair of composable functors A
u
ÝÑ B

v
ÝÑ C of infinity

categories, an infinity category X and functors f : A Ñ X, g : B Ñ X, h : C Ñ X. Con-
sider also α : f Ñ u�g in XA, β : g Ñ v�h in XB, and assume that α exhibits g as a left
Kan-extension of f along u.

Then, β exhibits h as a left Kan-extension of g along v if and only if the composite

γ : f
α
ÝÑ u�g

u�β
ÝÝÑ u�v�h � pvuq�h

exhibits h as a left Kan-extension of f along vu.

Proof. We have by naturality the commutative diagram
HomXBpg, v�Fq

HomXC ph,Fq HomXBpv�h, v�Fq HomXApu�g, u�v�Fq HomXApf, u�v�Fq

HomXApu�v�h, u�v�Fq

v�h,F

β�

u�
v�h,v�F

u�
g,v�F

pu�βq�

α�

a b

c

Where α being a witness to a left Kan-extension translates to the map b being an
equivalence. Now β is a witness to a left Kan-extension if and only if a is an equivalence.
Similarly γ witnesses a left Kan-extension if and only if c is an equivalence. By the two
out of three property, the lemma follows. �

Proposition 2.16. Consider for n ¥ �2 an infinity category C with n-finite colimits,
and a functor F : Sn Ñ C. Then, F preserves n-finite colimits if and only if for every
object X P Sn, the image of the canonical cocone of Construction 2.12 under F is a
cocone exhibiting FX as the colimit of the constant X indexed diagram with value F�.

Proof. We have seen that the canonical cocone of Construction 2.12 is a colimit cocone,
so if F preserves n-finite colimits it preserves this one. For the converse, consider a
diagram u : X Ñ Sn for Y an n-finite space. If u classifies a left fibration p : E � X
with n-finite total space E, we have in Lemma 2.10 seen that there is a canonical colimit
cocone α : u Ñ EX in FunpX,Snq. We must show that Fα : Fu Ñ pFEqX is also a
colimit cocone.

As C has n-finite colimits, it has sufficiently many colimits (cf. [Cis19, Proposition
6.4.9]) for the existence of the left Kan-extension functor

CE CX
p!

p�

%

Recall that in such a case, we can compute the left Kan-extension of any F : E Ñ C by
the identification

pp!Fqx � colimFäx

Where we defined Fäx as in Notation 2.14.

Lemma 2.17. Consider a left fibration p : E �L X and an infinity category C with
sufficiently many colimits for the existence of the left Kan-extension functor p! : CE Ñ CX .
Then we have for arbitrary F : X Ñ C a canonical identification

pp!Fqx � colimF|Ex

for all x P X.



ON A CHARACTERIZATION OF HIGHER SEMIADDITIVITY 17

Remark 2.18. The same is true for every map between spaces, as long as we remember
our convention of taking fibers in the infinity category of spaces, i.e. the “homotopy
fiber”.

Proof. We have the following diagram,

Ex Eäx E

� Xäx X

p{x p
{

1x

{

Now, recall (cf. [Cis19, Definition 4.4.1 and Proposition 4.4.11]) that as the left fibration

p is proper and 1x is final, the map Ex Ñ Eäx is final as well. Consequently the

computation of a Eäx indexed limit can equivalently be done after pulling back to Ex
([Cis19, Proposition 6.4.5]). �

We claim that Fu is the left Kan-extension of pF�qE along p. In light of Lemma 2.17 on
Kan-extensions, this is just the computation pp!Fqx � colimpF�qEx , which in light of the
identification Ex � upxq is colimpF�qupxq � Fpcolim �upxqq � pFuqx. Further, the witness
pF�qE Ñ p�Fu � Fup is given by F being applied to the map �E Ñ up in FunpE,Snq
given by the morphism of fibrations

E E �X E E S�

E X Sp

p
{

{

δ

Further, the composite

pF�qE Ñ p�pFuq p�Fα
ÝÝÝÑ p�q�pFEq � pFEqE

is obtained by applying F to the map

�E Ñ p�uÑ EE

which corresponds to the diagram of left fibrations,

E E �X E E � E

E

Pr1

δ

π1

∆

and thus can be identified with pieq as well. By hypothesis the composite Fpieq is a
representing map of a left Kan-extension, and we have seen that pF�qE Ñ p�pFuq is as
well. Consequently, by the pasting Lemma 2.15, Fα represents FE as q!pFuq, that is the
colimit of Fu. This concludes the proof. �

2.2. The category of spans Smn .

Proposition 2.19. For �2 ¤ m ¤ n, pSn,Sn,mq is a weak CoWaldhausen infinity cate-
gory .

Proof. First, Sn,m is a wide subcategory of Sn as the equivalences in both are the equiv-
alences in Sn. Precisely, an application of the long exact sequence in homotopy shows
that a 1-morphism in Sn is an equivalence if and only if all fibers are contractible. In
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other words, if and only if the 1-morphism lies in Sn,�2 . That is, we have inclusions of
subcategories (on the nose)

S�

n � Sn,�2 � Sn,m � Sn
so that taking the maximal subgroupoid inclusion yields an actual equality of subcate-
gories S�

n � S�

n,m � S�

n .
Now, as the property of being m-truncated is preserved by equivalences in the arrow

category, it suffices to show that the pullback of m-truncated maps is m-truncated. The
claim thus follows from the fact that we can think of fibers as forming pullbacks in
spaces. As we can compose pullback squares, the fiber of the pullback is a fiber of the
original map. Thus m-truncated maps pull back to m-truncated maps. The proposition
follows. �

Definition 2.20. For �2 ¤ m ¤ n, let Smn :� SpanpSn,Sn,mq.

Remark 2.21. As Sn has finite limits, we may apply Theorem 1.30, establishing a sym-
metric monoidal structure on Smn for �2 ¤ m ¤ n, that acts by Cartesian product on
objects and by level-wise product on 1-morphisms.

Observation 2.22. By considering the long exact sequence in homotopy one also observes
that any map between n-finite spaces is necessarily n-truncated. In other words Sn,n � Sn.

Thus, we denote SpanpSnq :� Snn � SpanpSn,Sn,nq � SpanpSn,Snq, the infinity category
of spans of n-finite spaces (with no restriction on the wrong way maps).

We then have for n ¥ �2 a filtration

Sn � S�2
n � S�1

n � . . .Smn � . . .Snn � SpanpSnq

Proposition 2.23. For �2 ¤ m ¤ n, the subcategory inclusion Sn � Smn preserves
n-finite colimits.

Proof. By Proposition 2.16 on n-finite colimit preserving functors out of Sn, it suffices
to show that the inclusion preserves the canonical colimit cocones pixq : �X Ñ XX of
Construction 2.12 for every X P Sn.

For this, we require the map in SSmn

HomSmn pX,�q
p�qX
ÝÝÝÑ HomSmn X pXX , p�qXq

pixq�

ÝÝÝÑ HomSmn X p�X ,�q

to be an equivalence. It suffices to check that the component at an arbitrary Y P Smn is
invertible.

Lemma 2.24. Consider X P S, and an infinity category C with X-shaped colimits. Then,
for objects a, b P C, we have an identification

HomSpX,HomCpa, bqq � HomCX paX , bXq

Proof. As we can identify HomSp�,�q � 1S and representable functors are continuous,
we have

HomSpX,HomCpa, bqq � HomSpcolimX �,HomCpa, bqq � limX HomSp�,HomCpa, bqq � limX HomCpa, bq

Now as the constant diagram aX has a colimit in C, this is in turn

limX HomCpa, bq � HomCpcolimX aX , bq � HomCX paX , bXq

�

Thus, it suffices to prove that the composite

HomSmn pX, Y q Ñ HomSmn X p�X , YXq � HomSpX,HomSmn p�, Y qq
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is an equivalence. We have the identifications HomSmn pX, Y q �
�
SnäX � Y

	�
tpu,vq | u:Sn,mu

of the mapping space onto the full subcategory of maps whose projection to X is m-

truncated, and HomS
�
X,HomSmn p�, Y q

�
� HomS

�
X, pSnä� � Y q

�

tpu,vq | u:Sn,mu

	
similarly.

We can also identify the term
�
Snä� � Y

	�
tpu,vq | u:Sn,mu

in the latter with
�
SmäY

	�
, as

a map Z Ñ � being m-truncated is equivalent to Z being m-finite.
Unraveling the identifications, one can understand the action of the composite�

SnäX � Y

	�
tpu,vq | u:Sn,mu

Ñ HomS

�
X,
�
SmäY

	�

on objects as sending a pu, vq : Z Ñ X � Y to the X-indexed diagram of spans whose
value at an object x P X is the composite span

Zx

� Z

� X Y

u
vx

{

1�

This is in turn just taken to the X-indexed diagram pZx Ñ Y qxPX in
�
SmäY

	�
given by

taking the right way maps. The fully coherent map can be described using the straight-
ening construction, which is a functorial way of performing the assignment acting as
pZ Ñ Xq ÞÑ pZxqxPX : X Ñ S.

To be precise, we have an equivalence (cf. [Cis19, Corollary 6.5.9])

StX : SäX
�
ÝÑ FunpX,Sq

for every X P S. We construct a chain of equivalences

SäX � Y � FunpX � Y,Sq � FunpX, FunpY,Sqq � Fun
�
X,SäY

	
Now, HomSpA,Bq � FunpA,Bq� � FunpA,Bq as all objects involved are infinity groupoids.
Taking maximal subgroupoids and restricting to the Z Ñ X � Y whose projection to X
is m-truncated (so Z is necessarily n-finite by a long exact sequence argument and the
assumption m ¤ n) we get an equivalence�

SnäX � Y

	�
tpu,vq | u:Sn,mu

Ñ HomS

�
X,
�
SmäY

	�

which computes the aforementioned composite. This concludes the proof. �

Proposition 2.25. Let �2 ¤ m ¤ n. Then the subcategory inclusion Sn � Smn is wide.

Proof. We must show that the S�

n � Smn
�

is an equivalence. It acts as identity on objects
so we need only show that it is fully-faithful.

Identifying Sn � S�2
n , by Proposition 1.22 on the action of such a functor on spans we

see that for each X, Y P Sn the map defines an equivalence of Sn onto the full subcategory
of HomSmn pX, Y q whose objects are the spans with p�2q-truncated wrong way maps (in
other words, equivalences).

Lemma 2.26. Consider an infinity category C. For objects X, Y of C, the mapping space
HomC� pX, Y q of C�

can be identified with the full subcategory of HomCpX, Y q spanned by
the equivalences.
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Proof. For any particular X, Y , the map on mapping spaces induced by C�
� C is up to

equivalence the map

MapRC� pX, Y q� MapRC pX, Y q

on right mapping spaces (recall from Notation 1.21 that the right mapping space MapRC pX, Y q

is the fiber of the projection CäY Ñ C at X).

We have an inclusion C�

äY � CäY . The n-morphisms (n-simplices) of CäY
can be described as pn � 1q-morphisms of C terminating at Y . Under this inclusion,

the n-morphisms that belong to C�

äY are precisely those such that each consecutive

map (restriction to ∆ti,i�1u � ∆1) is an equivalence. The fiber MapRC pX, Y q (and simi-
larly MapRC� pX, Y q) is computed by taking the pn� 1q-simplices terminating in Y whose
restriction to ∆t0,1,...nu is the degenerate n-simplex at X. Consequently, the only deter-
mining property for a n-morphism of MapRC pX, Y q to lie in MapRC� pX, Y q is that of the

restriction to ∆tn,n�1u being an equivalence. In other words, MapRC� pX, Y q is precisely

the full subcategory of MapRC pX, Y q spanned by the equivalences. �

The equivalence established immediately before the lemma therefore restricts to an
equivalence of HomS�n pX, Y q onto the full subcategory of HomSmn pX, Y q consisting of the
spans whose legs are equivalences in Sn. But we have seen in Proposition 1.29 that these
are precisely the equivalences in Smn . Thus, the map induces equivalences on mapping
spaces, so is fully faithful as well. �

Corollary 2.27. If X is a space, then every X-indexed diagram in Smn is equivalent to
(the image of) an X-indexed diagram in Sn.

Observation 2.28. A consequence of the fact that every diagram in Smn indexed by a
space comes from one in Sn (Corollary 2.27), and the fact that the inclusion Sn � Smn
preserves n-finite colimits (Proposition 2.23) is that Smn admits n-finite colimits.

Further, by Proposition 2.16 on colimit preserving functors out of Sn, a functor Smn Ñ C
preserves n-finite colimits if and only if its restriction to Sn does.

Proposition 2.29. The symmetric monoidal structure on Smn of Theorem 1.30 induced
by the Cartesian product on Sn commutes with n-finite colimits in each variable.

Proof. The Cartesian monoidal structure on Sn is the restriction of the one on S, which
commutes with colimits variable-wise. As Sn has n-finite colimits which are computed in
S (Proposition 2.9), we see that the Cartesian monoidal structure on Sn preserves n-finite
colimits.

We must check that, say for arbitrary n-finite X, the functor X b p�q : Smn Ñ Smn
preserves n-finite colimits. The symmetric monoidal structure on Smn extends that on
Sn. In particular the restriction of X b p�q : Smn Ñ Smn to Sn (where X is taken as an
object of Smn ) is equivalently the composite X b p�q : Sn Ñ Sn � Smn (with X now
taken as an object of Sn). As both factors are known by Proposition 2.23 to preserve
n-finite colimits, this restriction commutes with them as well. We have just observed in
Observation 2.28 that this is sufficient to conclude that the map X b p�q : Smn Ñ Smn
commutes with n-finite colimits. �

Notation 2.30. For n ¥ �2, we denote by Catκn the subcategory of Cat8 spanned by
the infinity categories with n-finite colimits and functors preserving these colimits.

For infinity categories C and D with n-finite colimits, we denote by FunκnpC,Dq the
full subcategory of FunpC,Dq spanned by the functors preserving n-finite colimits.
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Proposition 2.31. (cf. [Lur, Corollary 4.8.4.1]) There is a symmetric monoidal struc-
ture Catbκn Ñ Fin� on Catκn such that for every two objects C,D, the tensor C b D is
characterized by the existence of an n-cocontinuous map C � D Ñ C b D such that for
any other object E, the restriction

FunκnpC bD, Eq Ñ FunκnpC �D, Eq
is fully faithful and induces an equivalence onto the full subcategory of FunκnpC � D, Eq
that are n-cocontinuous in each variable.

Corollary 2.32. The commutative algebra objects in Catκn can be identified with sym-
metric monoidal infinity categories admitting n-finite colimits such that the monoidal
product is variable-wise n-cocontinuous.

In particular, by Proposition 2.29 the symmetric monoidal infinity category Smn is a
commutative algebra object in Catbκn.

3. Higher Semiadditivity

3.1. Idea. To make sense of a notion of higher semiadditivity, we must first make precise
the norm map that we wish to be an equivalence. Consider the first truly “higher” case,
that is that of a diagram F : X Ñ C with C 0-semiadditive and X a 1-finite space.

The data of a map colimF Ñ limF is intuitively that of a family of morphisms in C,
FxÑ Fy that are functorial in the objects x, y of X.

To produce such a map, recall that when C is (0-)semiadditive, each mapping space
HomCpa, bq is an E8-monoid. In particular, when the mapping spaces HomXpx, yq of the
indexing category are essentially discrete, we can define such a functorial family of maps
fx,y : Fx Ñ Fy by simply “summing” the images of a choice of representatives of the
path components of HomXpx, yq. These correspond to a “Norm map”

NmF : colimF Ñ limF
and we can try to define C to be 1-semiadditive when each norm map NmF is invertible.

The summation operation is induced explicitly in terms of the Norm map for 0-
semiadditivity4. For a finite family f1, f2, . . . , fn : x Ñ y, their summation is defined
as

x
∆
ÝÑ limxX Ñ lim yX � colimxX

∇
ÝÑ y

where limxX Ñ lim yX is the map on colimits induced by fX : xX Ñ yX in FunpX, Cq (the
“post-composition by f” functor), and the equivalence is the inverse of the norm map.

If C is 1-semiadditive, one can try to use the same definition to define an operation»
X

: FunpX,HomCpx, yqq Ñ HomCpx, yq

which somehow gives a notion of summing or integrating families of morphisms from x
to y in C indexed by 1-finite spaces.

Remark 3.1. This idea can be expanded upon to describe the notion of an m-commutative
monoid. Intuitively, infinity categories where there is a notion of integrating families of
morphisms with common source and target indexed by m-finite spaces.

One recovers E8-monoids as the 0-commutative monoid objects. One can show (cf.
[Har20, Section 5.2]) that there is a sense in which that m-semiadditive infinity categories
are those whose mapping spaces are m-commutative monoids.

4That is, the map “induced by the diagonal matrix”
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Moving onward, one can try to repeat this for 2-semiadditivity. That is, for a 1-
semiadditive C, a 2-finite space X and a F : X Ñ C, one might attempt to define a
functorial family of maps fx,y : Fx Ñ Fy by integrating the family of maps from Fx to
Fy indexed by the 1-finite space HomXpx, yq, that F defines. The rest of this section will
be concerned with a formalization of precisely this approach.

Remark 3.2. The content of this section is primarily due to [HopLur13][Section 4].

3.2. Ambidexterity. Intuitively, for an n-finite space X and an infinity category C with
n-finite colimits, one says that X is C-ambidextrous if the colimit of any functor X Ñ C
can be canonically identified with its limit. One then recovers the n-semiadditive infinity
categories as those infinity categories C with n-finite colimits such that every n-finite
space is C-ambidextrous.

It will turn out to be convenient to see ambidexterity not as a property of spaces, but
that of maps of spaces. That is, we would like to say that f : X Ñ Y is C-ambidextrous if

the pullback functor FunpY, Cq f�
ÝÑ FunpX, Cq has a left adjoint f! which can be identified

as the right adjoint as well. In other words, if the left and right Kan-extensions along f
coincide. One of the main results of [HopLur13] is that the property of C-ambidexterity
is ultimately a condition on the (homotopy)-fibers of f , so in fact we can also identify C
as being n-semiadditive when every morphism between n-finite spaces is C-ambidextrous.

One minor inconvenience is that C may not have “large” enough colimits for the left
Kan extension to be defined for all spaces (indeed, [HopLur13, Definition 4.4.2] only
defines n-semiadditivity as a property of cocomplete infinity categories). Fortunately, as
any infinity category with n-finite colimits has enough colimits for the left Kan extension
of any f : X Ñ Y between n-finite spaces to exist (“point-wise”), we can say that the

functor of infinity categories Sop
n

Funp�,Cq
ÝÝÝÝÝÑ Cat8 takes any morphism to a right adjoint.

This will suffice as [HopLur13] works with the notion of “Beck-Chevalley” fibrations, of
which the Cartesian fibration corresponding to our functor Sop

n Ñ Cat8 is an example.

Notation 3.3. We will adhere to the standard notation of denoting the fiber of a map
X Ñ Y at an object y : � Ñ Y as Xy :� tyu�Y X. Further, when C Ñ X is a biCartesian
fibration5 of quasicategories, we have a family of adjunctions parameterized by morphisms
of X . For a morphism f : X Ñ Y of X , we will denote this adjunction as

CX CY
f!

f�

%

Definition 3.4. If C Ñ X is a Bicartesian fibration of quasicategories, we define for
every commutative square σ in X ,

A C

B D

u

v

p q

the Beck-Chevalley transformation BCrσs : p!u
� Ñ v�q! as the adjoint to the map

u�
u�ηq
ÝÝÝÑ u�q�q! � p�v�q!

(where ηq : 1CC Ñ q�q! is the unit of the adjunction induced by q)

5A map that is both a Cartesian and a coCartesian fibration.
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Definition 3.5. If X is an infinity category with pullbacks, we say that a biCartesian
fibration C Ñ X is a Beck-Chevalley fibration when for every Cartesian square σ in X ,
the Beck-Chevalley transformation BCrσs of Definition 3.4 is invertible.

Example 3.6. The primary example of Beck-Chevalley fibrations that we will be con-
cerned with is that of local systems in a category with n-finite colimits. That is, we will
consider a category C with n-finite colimits, and the Cartesian fibration LocSyspCq Ñ S
classifying the functor Funp�, Cq : Sop Ñ Cat8. Its restriction/pullback to Sn is also co-
Cartesian, classifying the functor that is the same on objects but is the left Kan extension
on morphisms.

Definition 3.7. Given a biCartesian fibration C Ñ X , a morphism X
f
ÝÑ Y in X , and

a natural transformation 1CY
µ
ÝÑ f!f

�, we define for objects A,B of CY and a morphism

f�A
u
ÝÑ f�B in CX a

³
f
udµ : AÑ B in CY by

A
µAÝÑ f!f

�A
f!uÝÝÑ f!f

�B
εf
ÝÑ B

(where εf is the counit of the adjunction induced by f)
This induces a functor dµ : u ÞÑ

³
f
udµ given by the composition

HomCX pf
�A, f�Bq

pf!qf�A,f�B
ÝÝÝÝÝÝÝÑ HomCY pf!f

�A, f!f
�Bq

pεf q�
ÝÝÝÑ HomCY pf!f

�A,Bq
pµAq

�

ÝÝÝÑ HomCY pA,Bq

We will now introduce for every Beck-Chevalley fibration, a class of ambidextrous
morphisms. We will do this by inductively constructing for every n ¥ �2 a class of
n-ambidextrous morphisms along with, for each n-ambidextrous f , a choice of natural

translation 1CY
µnf
ÝÑ f!f

� exhibiting f! as a right adjoint to f� (which is therefore well
defined up to homotopy). For this it will be convenient to simultaneously define for each
n ¥ �2 a class of “weakly pn� 1q-ambidextrous morphisms”.

Construction 3.8. For a Beck-Chevalley fibration C Ñ X such that the base X has
pullbacks, call the class of equivalences in X the p�2q-ambidextrous morphisms. For
every equivalence f , let µ�2

f be a choice of inverse equivalence to the counit f!f
� Ñ 1CY .

For n ¥ �1, given a notion of pn � 1q-ambidextrous morphisms, we call a morphism

X
f
ÝÑ Y weakly n-ambidextrous if the diagonal X

δf
ÝÑ X �Y X is n-ambidextrous. Using

this as a base case we will define for every n ¥ �2 a notion of n-ambidextrous morphisms
and µn’s as above, and consequently a notion of weakly pn� 1q-ambidextrous in terms of
the diagonals.

Now, assuming that we have defined a notion of n-ambidextrous and the associated
µn’s, we will define for every weakly pn � 1q-ambidextrous morphism f a natural trans-
formation νn�1

f : f�f! Ñ 1CX . This is done by forming the diagram involving the pullback
square σ:

X

X �Y X X

X Y

π2

π1

f

fσ
{

δf

1X

1X

and forming the composition

f�f!
BCrσs�1

ÝÝÝÝÝÑ π1!π
�
2

π1!µ
n
δf
π�2

ÝÝÝÝÝÑ π1!δf !δ
�
fπ

�
2 � 1CX � 1CX � 1CX
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We will say that a morphism f of X is pn� 1q-ambidextrous if every pullback f 1 of f
along a morphism in X is weakly pn � 1q-ambidextrous, and furthermore the associated
νn�1
f 1 is the counit of an adjunction f 1� % f 1! . In this case, we define µn�1

f to be a choice

of unit for the adjunction f� % f! compatible with νn�1
f .

Remark 3.9. For an pn�1q-ambidextrous f : X Ñ Y , the component of νn�1
f at an object

A P CX can be identified with
³
δf

1Cdµ
n
δf
P HomCX�Y X

pπ�2A, π
�
1Aq under the equivalence

of mapping spaces

HomCX�Y X
pπ�2A, π

�
1Aq � HomCX pπ1!π

�
2A,Aq � HomCX pf

�f!A,Aq

We also note the following proposition.

Proposition 3.10. (cf. [HopLur13, Proposition 4.1.10]) For a Beck-Chevalley fibration
C Ñ X such that the base X has pullbacks,

(1) The classes of n-ambidextrous morphisms and weakly pn � 1q-ambidextrous mor-
phisms are closed under pullbacks.

(2) For �1 ¤ m ¤ n, if f is a weakly m-ambidextrous morphism, it is weakly n-
ambidextrous as well and furthermore, νmf and νnf are homotopic.

(3) For �2 ¤ m ¤ n, if f is an m-ambidextrous morphism, it is n-ambidextrous as
well and furthermore, µmf and µnf are homotopic.

Definition 3.11. For a Beck-Chevalley fibration C Ñ X such that the base X has
pullbacks (as in the above construction) we will say that a morphism in X is (weakly)
ambidextrous if it is (weakly) n-ambidextrous for some n.

Remark 3.12. In light of the monotone nature of (weak) ambidexterity (cf. Proposi-
tion 3.10), we can coherently choose our µnf ’s and νnf ’s such that if f is m-ambidextrous

and n ¥ m, µmf � µnf (and similarly for the νkf ’s).
Thus, we may just speak of µf for f ambidextrous and νf for f weakly ambidextrous.

We record a lemma on the compatibility of the νf ’s and µf ’s with Beck-Chevalley
transformations for future use.

Lemma 3.13. (cf. [HopLur13, Proposition 4.2.1]) For an infinity category X with pull-
backs, a Beck-Chevalley fibration C Ñ X , and a pullback square σ in X

X 1 Y 1

X Y

f 1

f

pX pYσ
{

(1) If f is weakly ambidextrous, so is f 1 and νf 1p
�
X : f 1�f 1!p

�
X Ñ p�X is (homotopic to)

the composition

f 1�f 1! f
�
X

f 1�BCrσs
ÝÝÝÝÝÑ f 1

�
p�Y f!

�
ÝÑ p�Xf

�f!

p�XνfÝÝÝÑ p�X

(2) If f is ambidextrous, then so is f 1 and we also have that p�Y µf : p�Y Ñ p�Y f!f
� is

the composite

p�Y
µf 1p

�
Y

ÝÝÝÑ f 1! f
1�p�Y

�
ÝÑ f 1!p

�
Xf

� BCrσsf�

ÝÝÝÝÝÑ p�Y f!f
�



ON A CHARACTERIZATION OF HIGHER SEMIADDITIVITY 25

3.3. A criterion for ambidexterity. We will now restrict to our case of interest, the
Beck-Chevalley fibration LocSyspCq Ñ Sn for an infinity category C with n-finite colimits.

Here, LocSyspCqX � FunpX, Cq and the adjunction induced by a morphism X
f
ÝÑ Y is

precisely the left Kan extension - pullback adjunction. Thus, our notion of ambidextrous
morphisms does indeed realize morphisms for whom the left Kan extension is also a right
Kan extension. For such a C, we will call the (weakly) ambidextrous morphisms the
(weakly) C-ambidextrous morphisms.

Definition 3.14. For an infinity category C with n-finite colimits, call an n-finite space
X (weakly) C-ambidextrous if the map to the terminal object X Ñ � in Sn is (weakly)
C-ambidextrous.

Remark 3.15. As the colimit (resp. limit) functor FunpX, Cq Ñ C can be identified with
left (resp. right) Kan extension along the map from X to the terminal object, the colimit
of a C-valued functor out of a C-ambidextrous space can be canonically identified as its
limit.

The main result of [HopLur13] provides a characterization of C-ambidextrous mor-
phisms. We state a version of the result adapted for the case of an infinity category with
n-finite colimits. While the proof is essentially the same, we present it just to be clear
about the modifications to be made.

Proposition 3.16. (cf. [HopLur13, Proposition 4.3.5]) Consider an infinity category C
with n-finite colimits and X Ñ Y a Kan fibration between n-finite spaces. Then f is C-
ambidextrous (resp. weakly ambidextrous) if and only if each fiber Xy is C-ambidextrous
(resp. weakly ambidextrous). In other words, for an infinity category C with n-finite col-

imits and a morphism X
f
ÝÑ Y in Sn, f is C-ambidextrous if and only if each (homotopy)

fiber is C-ambidextrous.

Proof. The “only if” implication is a direct consequence of (weak) ambidexterity being sta-
ble under pullbacks (Proposition 3.10). For the converse, as every morphism between n-
finite spaces is n-truncated, we may proceed by induction onm :� min tk | f is k � truncatedu.

The p�2q-truncated maps are the equivalences, and thus we get the base case m � �2
as equivalences are always (weakly) ambidextrous. Now for m ¡ �2, assume that the
claims hold for all m1-truncated morphisms with m1   m. First assume that each Xy is
weakly ambidextrous, we will show the m-truncated f is weakly ambidextrous.

For this, note that the diagonal δf : X Ñ X �Y X is pm � 1q-truncated, and further
its fibers, say

Xpa,bq X

� X �Y X
pa,bq

δf
{

for objects a, b of X with common image y in Y can be seen as the fiber

Xpa,bq Xy

� Xy �Xy
pa,bq

δ
{

so that Xpa,bq Ñ � is the pullback of an ambidextrous morphism and hence ambidextrous.
Thus by the pm� 1q-truncated case applied to δf , f is weakly ambidextrous.

To complete the induction, we must also show that if the fibers Xy are in fact ambidex-
trous, then f is as well. Now, as the fibers of any pullback of f are fibers of f , it suffices
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to show that νf : f�f! Ñ 1CX is a counit of an adjunction f� % f! (as we may replace f
by any of its pullbacks).

What this means is that for any F P CY ,G P CX , the functorial map

HomCY pF , f!Gq
f�F,f!GÝÝÝÑ HomCX pf

�F , f�f!Gq
pνf q�
ÝÝÝÑ HomCX pf

�F ,Gq
is an equivalence. Note that this map is compatible with the formation of colimits in the
F P CY variable.

Lemma 3.17. Let C be an infinity category with n-finite colimits and X P Sn. Then,
FunpX, Cq is generated under X-indexed (so in particular n-finite) colimits of functors of
the form ι!C, where ι is the inclusion of an object txu Ñ X and C P C.

Proof. (of the lemma) Consider the maps X
δ
ÝÑ X �X

π2ÝÑ X composing to the identity.
Then we have π2!δ! � 1CX , and furthermore under FunpX � X, Cq � FunpX, FunpX, Cqq
the functor π2! corresponds to colim : FunpX, CXq Ñ CX .

Thus every object F P CX is a colimit of some X Ñ CX ; in fact it is the colimit of
the object A : X Ñ CX corresponding to δ!F . The value of A at an object x can be
computed as pιx � 1Xq

�δ!F : X Ñ C, where ιx : txu Ñ X is the inclusion of the point x.
There is a Cartesian square with the Beck-Chevalley property,

txu txu �X

X X �X

p1txu,ιxq

ιx

δ

ιx�1X

{

so we can compute

pιx � 1Xq
�δ!F � ιx!ι

�
xF � ιx!pFxq

Consequently, every such F � colimxPX ιx!pFxq can be written as the colimit of an X-
indexed diagram of objects of the form ι!C. �

Coming back to the proof of the main result, recall that we had noted right before the
lemma that the map in question was compatible with colimits in the CY variable. The
objects in question are precisely those generated by colimits as in Lemma 3.17. It thus
suffices to show that the map is an equivalence when F is an object of the form ι!C, for
ι : tyu Ñ Y the inclusion of an object and C P C.

Consider the following Cartesian square σ

Xy X

tyu Y

ιy

fy

ι

fσ
{

There is a diagram

HomCY pι!C, f!Gq HomCX pf
�ι!C, f

�f!Gq HomCX pf
�ι!C,Gq

HomCpC, ι
�f!Gq HomCXy pf

�
yC, f

�
y ι

�f!Gq HomCXy pf
�
yC, ι

�
yGq

HomCpC, fy !ι
�
yGq HomCXy pf

�
yC, f

�
y fy !ι

�
yGq

f�ι!C,f!G pνf q�

pf�y qC,ι�f!G

adj

pf�y qC,fy !ι
�
y G

pνfy q�
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with the right square deriving from Lemma 3.13, which asserts the compatibility of the
νf ’s with Beck-Chevalley transformations (the equalities with the third row are in light
of the Beck-Chevalley isomorphisms). In particular, the right vertical map is invertible
by the Beck-Chevalley property (and the left vertical one is also invertible as it is just an
adjunction isomorphism).

Thus it suffices to show that the bottom path is invertible. But the composition is the
adjunction morphism induced by νfy for C and ι�yG. Invertibility thus follows from our
assumption that each Xy is C-ambidextrous, as this means that νfy is indeed the counit
of an adjunction f�y % fy !, completing the proof. �

3.4. Semiadditivity.

Definition 3.18. For n ¥ �2, we define an infinity category C with n-finite colimits
to be n-semiadditive when every n-finite space is C-ambidextrous (with respect to the
Beck-Chevalley fibration LocSyspCq Ñ Sn).

Remark 3.19. In light of Proposition 3.16 (a corollary of the main result of Hopkins and
Lurie), an infinity category C with n-finite colimits is n-semiadditive if and only if every
morphism in Sn is C-ambidextrous.

Definition 3.20. Consider an n-semiadditive infinity category C, for every pair of objects
A,B of C and n-finite space X we have Lemma 2.24, identifying

HomSpX,HomCpA,Bqq � HomCX pAX , BXq

Given this and the integral map

dµp �

»
p

: HomCX pp
�A, p�Bq Ñ HomCpA,Bq

of Definition 3.7, we have a map

dµX :�

»
X

: HomSpX,HomCpA,Bqq � HomCX pAX , BXq Ñ HomCpA,Bq

Examples 3.21. As the p�2q-finite spaces are precisely the contractible ones, every
infinity category is p�2q-semiadditive, as promised.

As for p�1q-semiadditivity, the diagonal of H is invertible so H is always weakly am-
bidextrous. The pullback of H Ñ � along X Ñ � is simply the (essentially) unique
i : HÑ X. Further, the corresponding adjunction i! % i� is such that under the identifi-
cation FunpH, Cq � � the right adjoint i� is just the map to the terminal object, and the
left adjoint i! : � Ñ CX picks out the initial object (constant functor at the initial object
of C).

The corresponding νi : i
�i! Ñ 1� is thus identifiable with the identity i�i! � 1, and this

being a counit is just saying that the functorial map (in F : X Ñ C)

HomCX pF ,Hq � HomCX pF , i!�q Ñ Hom�pi
�F , i�i!�q � �

is invertible, or in other words that the initial object of CX is also final. Thus, we do
indeed have that the p�1q-semiadditive infinity categories are the pointed ones.

Remark 3.22. More generally, a consequence of Proposition 3.16 (the main result of
[HopLur13]) is that if C is n-semiadditive, every pn�1q-finite space is weakly C-ambidextrous.

Remark 3.23. Now let C be pointed (i.e. p�1q-semiadditive), we compute for every pair
of objects A,B P C the associated dµ : � � HomSpH,HomCpA,Bqq Ñ HomCpA,Bq. This
is precisely the zero map, as one of the objects in the composable sequence defining it is
the zero object.
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Computation 3.24. Consider a pointed infinity category C, and a finite set X, thought
of as a discrete space (equivalently, a 0-finite space). Denoting the map to the point
p : X Ñ �, we wish to compute νX :� νp : p�p! Ñ 1C. This can be done as the infinity
category C is p�1q-semiadditive, as then the 0-finite X is weakly C-ambidextrous.

For this we will first compute µδ : 1C Ñ δ!δ
�, where δ : X Ñ X�X is the diagonal of X

(equivalently p). By our formula for computing left Kan extensions (Lemma 2.17), for a
F : X�X Ñ C, the value at a px, yq P X�X of δ!δ

�F can be computed as colimXpx,yq
δ�F .

But we have

Xpx,yq �

#
� x � y

H x � y

so that

pδ!δ
�Fqpx,yq �

#
Fx x � y

0 x � y

with

pµδF : F Ñ δ!δ
�Fq �

#
1Fx x � y

0 x � y

Given µδ, the transformation νX can be written as the composite

p�p! � π1!π
�
2

π1!µδπ
�
2ÝÝÝÝÝÑ π1!δ!δ

�π�2 � 1C

with the first equivalence being induced by the Beck-Chevalley transformation associated
to the Cartesian square

X �X X

X �

π2

π1

p

p
{

Now, we aim to compute for a functor F : X Ñ C and an object x P X, the map
pνXFqx : pp�p!Fqx � colimX F Ñ Fx. For this we observe that for G : X �X Ñ C, π1!G
can be computed as

pπ1!Gqx � colimtxu�X

�
G|txu�X

�
and we need simply apply that to (for y an arbitrary object of X)

pπ�2Fqpx,yq
pµδπ�2 Fqpx,yq
ÝÝÝÝÝÝÝÝÑ pδ!δ

�π�2Fqpx,yq � pδ!Fqpx,yq �

#
1Fy x � y

0 x � y

Thus,

pνXFqx : colimX F � pp�p!Fqx � pπ1!π
�
2Fqx

pπ1!µδπ�2 FqxÝÝÝÝÝÝÝÝÑ pπ1!δ!Fqx � Fx

is precisely the map whose restriction to the component corresponding to the object
x P X is the identity, and whose restriction to every other component is the zero map.

The adjunction map

HomC

�
A,
º
xPX

Fx

�
p�
A,
²
xPX Fx

ÝÝÝÝÝÝÝÑ HomCX

�
AX ,

�º
xPX

Fx

�
X

�
pνXFq�ÝÝÝÝÑ HomCX pAX ,Fq

being an equivalence for arbitrary F6, is thus equivalent to νXF exhibiting
²

xPX Fx as
the product/limit of F .

6In other words, X being C-ambidextrous.
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Observation 3.25. The last conclusion of Computation 3.24 can be restated as, X being
C-ambidextrous if and only if for arbitrary F : X Ñ C, F having a product

±
X F in C

and the canonical map
²

X F Ñ
±

X F given by the diagonal matrix being invertible, as
promised.

Proposition 3.26. (cf. [HopLur13, Proposition 4.4.9]) Let C be a pointed infinity cat-
egory with finite coproducts (equivalently, 0-finite colimits). Then C is 0-semiadditive if
and only if for every pair of objects A,B, there is a product A�B in C and the canonical
map A

²
B Ñ A�B given by the diagonal matrix is invertible7.

Proof. The statement about products is just the two point space being ambidextrous, so
it follows immediately from 0-semiadditivity. For the converse, assume that every such
diagonal matrix map is invertible. The 0-finite spaces can be equivalently identified with
finite discrete spaces or finite sets. In other words, it suffices to show that for every finite
set X, the map p : X Ñ � is C-ambidextrous.

We know that pointed infinity categories are p�1q-semiadditive, so the empty set and
the one element set are C-ambidextrous. It in fact is sufficient to show that the two
element set X � t0, 1u is C-ambidextrous, as we can then show it for any other finite set
Y by induction on its cardinality (cf. the proof of [HopLur13, Proposition 4.4.9]).

To be precise, for Y with more than two points, pick one of them, say y and define
Y Ñ X sending y to 0 and all other points to 1. Then, this map has fibers given
by sets of strictly smaller cardinality, which we can assume to be C-ambidextrous by
induction. Thus, by Proposition 3.16 (the main result of [HopLur13]), the map Y Ñ X
is also C-ambidextrous. Consequently, if we can show that X is C-ambidextrous, we
may conclude that Y is as well. But the hypothesis lets us conclude that the two point
space is indeed ambidextrous in light of the characterization of 0-ambidextrous sets of
Observation 3.25. �

Remark 3.27. Thus, 0-semiadditive infinity categories are indeed the classical semiaddi-
tive infinity categories as promised.

Furthermore, the induced transformation»
X

: HomSpX,HomCpA,Bqq Ñ HomCpA,Bq

can be seen to be just addition (in the sense of the E8-monoid operation on HomCpA,Bq),
so our so called “summation/integration” operation does indeed deserve the name in the
0-semiadditive case (when X is contractible, this acts as identity and when X is empty,
it picks out the zero map). For general n, the

³
operation continues to act in such a

way, “integrating” families of morphisms A Ñ B in an n-semiadditive infinity category
indexed by an n-finite space.

To be precise, one can (cf. [Har20, Section 5.2]) introduce a notion of n-commutative
monoids, which generalize E8-monoids and are informally objects in which one can “in-
tegrate” over n-finite spaces in a coherent way. One shows that the Hom-spaces of
n-semiadditive infinity categories are in fact n-commutative monoids, and the operation
itself can be computed precisely by the

³
-construction so defined.

Observation 3.28. The opposite of an n-semiadditive infinity category is also n-semiadditive.

Examples 3.29. We conclude by listing a few notable examples of semiadditivity.

 Stable infinity categories and nerves of semiadditive 1-categories are both 0-
semiadditive.

7In other words, the canonical maps A
²
B Ñ A and A

²
B Ñ B given by the identity in one leg

and zero in the other exhibit A
²
B as the product of A and B.
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 (cf. [Har20, Corollary 3.20]) For all integers �2 ¤ m ¤ n the infinity category
Smn is m-semiadditive (also presented later on in Example 4.18).

 (cf. [Har20, Proposition 5.26]) For any n ¥ �2, the category Catκn is n-semiadditive
(cf. Proposition 5.12 for a slightly different proof than that in [Har20]).

 The category of E8-monoid objects in any infinity category with finite products
is 0-semiadditive. (cf. [Har20, Section 5.2], also with a generalization)

 (cf. [HopLur13, Theorem 5.2.1]) For any n P N, the category of Kpnq-local spectra
is m-semiadditive for any m (where Kpnq denotes the Morava K-theory spectrum
at height n).

 (cf. [CarSchYan18, Theorem 5.3.9]) For any n P N and integer prime p, the infinity
category of T pnq-local spectra is m-semiadditive for every m (where T pnq is the
telescope of a finite p-local type n spectrum).

4. A Criterion for Semiadditivity

We now proceed to establish an alternative definition for n-semiadditivity, following
[Har20]. To be precise, we wish to establish the following theorem.

Theorem 4.1. (cf. [Har20, Corollary 3.19 and the discussion at the start of the first
paragraph of section 5.1]) Let C be an infinity category with n-finite colimits. Then C is
n-semiadditive if and only if it admits an action of Snn compatible with n-finite colimits
(that is, an action such that the action functor Snn�C Ñ C commutes with n-finite colimits
in each variable8).

Remark 4.2. In fact, when an infinity category with n-finite colimits is n-semiadditive,
the Snn -action so described is essentially unique (cf. [Har20, Corollary 5.3], which is
Corollary 5.10 below).

We will prove the equivalence of definitions in two steps. In this section we will prove
that an infinity category with n-finite colimits and such an action of Snn is indeed n-
semiadditive. This will be done by identifying the νf ’s and µδ’s of Hopkins and Lurie in
[HopLur13] with alternative natural transformations defined in terms of the Snn -action.
We will then show that the ν’s defined in terms of the Snn -action do indeed serve as
counits for our desired adjunctions (cf. [Har20, Section 3]).

The converse direction is an immediate consequence of the universal property of Snn
introduced by Harpaz in [Har20, Section 4] (where in fact, a universal property of Smn for
general �2 ¤ m ¤ n is introduced).

We will show that an infinity category with n-finite colimits admitting an action of Snn
compatible with these colimits is n-semiadditive by induction on n ¥ �2. The n � �2
case is immediate as all infinity categories are p�2q-semiadditive.

So it remains to establish the inductive step for n ¥ �1. For this, it is standard to
consider an pn�1q-semiadditive infinity category with n-finite colimits and such an action
of Snn , and then prove that it must be n-semiadditive. We will in fact establish, given
a slightly weaker hypothesis, a more general (yet verbose) condition for such an infinity
category to be n-semiadditive. Therefore, it is more convenient to assume instead the
“standing hypothesis”.

4.1. The Standing Hypothesis.

Hypothesis 4.3. We consider an pn � 1q-semiadditive infinity category C with n-finite
colimits, equipped with an action of Sn�1

n compatible with n-finite colimits.

8Alternatively, that C is an Snn -module in Catκn
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We will say that such an infinity category C satisfies the standing hypothesis (with
respect to this n).

Remark 4.4. Note that an action of Snn on an infinity category with n-finite colimits that
is compatible with n-finite colimits restricts (by Observation 2.28) to an action of Sn�1

n

that is also compatible with n-finite colimits. In particular, the standing hypothesis of
Hypothesis 4.3 is indeed weaker than the inductive one.

As a consequence of Proposition 3.16 (the main result of Hopkins and Lurie), when C
satisfies the standing hypothesis, every X P Sn is weakly C-ambidextrous. In particular,
the inductive construction produces a νX for every X.

Similarly, every pn � 1q-truncated map f in Sn is C-ambidextrous, so we have an
associated µf as well.

Notation 4.5. For the sake of convenience, we will denote the ν’s and µ’s introduced
by this construction with indices, for instance νk or µk to indicate that these derive from
an inductive construction, and to distinguish them from the morphisms ν and µ we will
later define in terms of the action of spans.

Notation 4.6. Given an infinity category C satisfying the standing hypothesis (Hypoth-
esis 4.3), given an n-finite space X we will denote by rXs : C Ñ C the n-finite colimit
preserving action of X.

Observation 4.7. Recall that for any n-finite space X, we have as in Construction 2.12
a canonical cocone exhibiting X as the colimit of the X-indexed constant diagram at the
point. Denoting by p : X Ñ � the map to the point, this statement is an equivalence
X � p̃!p̃

��, in terms of the adjunction

SXn S
p̃!

p̃�

%

induced by p. The action functor being n-cocontinuous in the Sn�1
n -variable means that

there is an induced identification

rXs � rp̃!�Xs � p! r�Xs � p!p
� r�s � p!p

�

in terms of the adjunction

CX C
p!

p�

%

also induced by p (the last equivalence a consequence of r�s � 1C).

Remark 4.8. In light of the Observation 4.7 on the action of a space, our notation can be
identified with that of [HopLur13, Notation 5.1.9]

4.2. Trace Forms. The criterion we ultimately establish will build upon a formulation
in terms of “Trace Forms”, as in [HopLur13, Section 5.1].

Notation 4.9. (cf. [HopLur13, Notation 5.1.7]) For a Beck-Chevalley fibration (recall

Definition 3.5) X π
ÝÑ C and a X

f
ÝÑ Y in C, let rX{Y s denote the composite

CY
f�
ÝÑ CX

f!ÝÑ CY
Definition 4.10. (cf. [HopLur13, Notation 5.1.7]) For a Beck-Chevalley fibration X π

ÝÑ C
and a weakly ambidextrous X

f
ÝÑ Y in C, define a map TrFmf : rX{Y s � rX{Y s Ñ 1CY ,

called the Trace Form, as the composite

rX{Y s � rX{Y s � f!f
�f!f

�
f!ν

k
f f

�

ÝÝÝÝÑ f!f
� εf
ÝÑ 1CY
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where εf is the counit of the adjunction f! % f�.
For a weakly ambidextrous object X of C, we will define TrFmX :� TrFmp, where

X
p
ÝÑ � is the map to the terminal object.

Proposition 4.11. (cf. [HopLur13, Proposition 5.1.8]) For X π
ÝÑ C a Beck-Chevalley

fibration and a weakly ambidextrous X
f
ÝÑ Y in C, the following are equivalent:

 νkf is a counit of an adjunction f� % f!, that is, f is ambidextrous.
 The Trace Form TrFmf exhibits rX{Y s as self dual in FunpCY , CY q.

Proof. Assume first that f is ambidextrous. Then we have a unit µf :� µkf compatible

with νf :� νkf in terms of which we can define a map coev : 1CY Ñ rX{Y s2 by

coev : 1CY
µkf
ÝÑ f!f

� f!ηff
�

ÝÝÝÝÑ f!f
�f!f

� � rX{Y s � rX{Y s

where ηf is a unit for f! % f� compatible with εf . We claim that TrFmf , coev are an
evaluation-coevaluation pair. To see this, we observe that we have commuting diagrams

f�f!f
�f! f�f!f

�f!

f�f! f�f! f�f! f�f!

1CX 1CX

f�f!ηf

ηfνf

νff
�f! ηff

�f!

ηf

f�f!νf

νf

which fit into diagrams

f�f!f
�f!f

�f!

f�f!f
�f! f�f!f

�f!

f�f! f�f! f�f!

f!f
�f!ηff

�

f!ηff
�f!νff

�

f!νff
�f!f

�

εff!f
�f�f!µf

f�f!f
�f!f

�f!

f�f!f
�f! f�f!f

�f!

f�f! f�f! f�f!

f!f
�f!ηff

�

f!ηff
�f!νff

�

f!νff
�f!f

�

f!f
�εfµff

�f!

which precisely compute the composites which we we want to identify with the identity.
In both cases, the bottom four maps are such that the first two and last two are both
derived from triangle maps corresponding to the adjunctions pµf , νf q and pηf , εf q. Thus
the identity is ultimately a composite of both, as desired.

For the converse, assume that TrFmf is a self-duality evaluation map and let coev be
a coevaluation compatible with it. We must show that νf :� νkf is a counit, that is, that
there is a unit map µf such that µf and νf satisfy the triangle identities.
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It in fact suffices to find two morphisms µ1, µ2 : 1CY Ñ f!f
� such that each satisfies one

of the triangle identities, that is, such that

f!f
�f! f�f!f

�

f! f! f� f�

µ1f! f!νf f�µ2 νff
�

This is because given such µ1, µ2 one sees that µ : 1CY Ñ f!f
� defined as

µ : 1C
µ1µ2ÝÝÝÑ f!f

�f!f
� f!νff

�

ÝÝÝÝÑ f!f
�

can be seen to satisfy both the triangle identities with respect to νf
9.

It remains to construct such a µ1 and µ2. We must show that pf!νf q � pµ1f!q � 1f!
and pνff

�q � pf�µ2q � 1f� . For this it suffices to show that the respective adjoints under
f! % f� are homotopic10.

For instance, in the case of µ2, we must show that εf �pf!νff
�q�pf!f

�µ2q is homotopic to
εf . This composite is simply TrFmf � prX{Y sµ2q. In light of the evaluation-coevaluation

identities, one may consider defining µ2 :� 1CY
coev
ÝÝÑ rX{Y s2

rX{Y sεf
ÝÝÝÝÝÑ rX{Y s. This does

indeed work, in light of the diagram

rX{Y s rX{Y s3 rX{Y s2

rX{Y s 1CY

TrFmf rX{Y s

rX{Y scoev

εf

rX{Y s2εf

TrFmf

For the other case, that of µ1 one might define dually

µ1 :� 1CY
coev
ÝÝÑ rX{Y s2

εf rX{Y s
ÝÝÝÝÝÑ rX{Y s

This will also work, but the argument proceeds slightly differently. We do however have
the dual diagram

rX{Y s rX{Y s3 rX{Y s2

rX{Y s 1CY

rX{Y sTrFmf

coevrX{Y s

εf

εf rX{Y s2

TrFmf

from which we see that the composite εf � pf!νff
�q � pµ1f!f

�q is homotopic to εf .

Lemma 4.12. Consider an adjunction

C D
F

G

%

and let η, ε denote a compatible unit and counit for it. Then there is an equivalence

HomFunpC,Dq pF ,Fq
G�
ÝÑ HomFunpD,Dq pFG,FGq ε�ÝÑ HomFunpD,Dq pFG, 1Dq

9In fact, µ is homotopic to both µ1 and µ2.
10This is encapsulated by the fact that the adjunction f! % f� induces an adjunction on passing to

homotopy categories.
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Proof. (of the lemma) This is an instance of the induced adjunction between the precom-
position functors. More precisely, for an infinity category E , we have an adjunction

EC ED
G�

F�

%

whose unit and counit can be described in terms of η and ε as η� : 1EC Ñ pGFq� � F�G�

and ε� : G�F� � pFGq� Ñ 1ED .
Instancing this at E :� D, we have an adjunction equivalence functorial in X, Y

HomFunpC,Dq pX,F�Y q
G�
ÝÑ HomFunpD,Dq pG�X,G�F�Y q

pε�q�ÝÝÝÑ HomFunpD,Dq pG�X, Y q

which is such that at X :� F , Y :� 1D, we have precisely the desired equivalence. �

Instancing the lemma with F :� f!,G :� f�, η :� ηf , ε :� εf we see that we have an
equivalence

HomFunpCX ,CY q pf!, f!q
pf�q�

ÝÝÝÑ HomFunpCY ,CY q pf!f
�, f!f

�q
pεfq

�ÝÝÝÑ HomFunpCY ,CY q pf!f
�, 1CY q

Under which pf!νf q � pµ1f!q and the identity correspond to εf � pf!νff
�q � pµ1f!f

�q and
εf respectively. As in the other case, passing to homotopy categories establishes that
pf!νf q � pµ1f!q is homotopic to the identity, completing the proof. �

Corollary 4.13. For an pn� 1q-semiadditive infinity category C with n-finite colimits, C
is n-semiadditive if and only if for every n-finite space X, the Trace Form TrFmX exhibits
rX{�s as self dual in FunpC, Cq.

Definition 4.14. For an n-finite space X, let TrX be the morphism of Sn�1
n given by the

span

X

X �X �

δX p

4.3. Statement of the criterion. We can now state precisely the actual criterion we
will devote most of this section to proving.

Proposition 4.15. (cf. [Har20, Propostion 3.17]) Let C be an infinity category satisfying
the standing hypothesis (Hypothesis 4.3). Then, C is n-semiadditive if and only if for
every n-finite space X, the transformation

rXs � rXs � rX �Xs
rTrX s
ÝÝÝÑ 1C

exhibits rXs as self dual in FunpC, Cq.

The connection between this criterion and an Snn -action is due to the fact that such an
action lets us explicitly write out a coevaluation compatible with the transformation just
described.

Lemma 4.16. Let X be an n-finite space, then the trace map X �X
TrXÝÝÑ � and its dual

�
yTrXÝÝÑ X �X in Snn are an evaluation-coevaluation pair exhibiting X as self dual.

Proof. What this means is to check that the pairs of composable maps in Snn

X
1X�zTrXÝÝÝÝÝÑ X �X �X

TrX�1XÝÝÝÝÝÑ X

X
zTrX�1XÝÝÝÝÝÑ X �X �X

1X�TrXÝÝÝÝÝÑ X
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have 1X as a composition.
We have the diagrams of (n-finite) spaces (where δ is the diagonal of X and p is the

map to the point)

X

X �X X �X

X X �X �X X

δ δ

π1�1X�p 1X�δ δ�1X π2�p�1X

{

1X 1X

X

X �X X �X

X X �X �X X

δ δ

π2 δ�1X 1X�δ π1

{

1X 1X

which witness precisely compositions as such. �

Corollary 4.17. Consider an infinity category C with n-finite colimits, and an action of
Snn such that the action functor preserves n-finite colimits variable-wise. C is necessarily
n-semiadditive.

Proof. As in the discussion at the start of this section, we proceed by induction on
n, the base case n � �2 being tautological. As the restriction of the action to Sn�1

n�1

preserves pn�1q-finite colimits variable-wise, we may inductively assume that C is pn�1q-
semiadditive. In particular, it satisfies the standing hypothesis.

Thus it suffices to show that the trace form

rXs � rXs � rX �Xs
rTrX s
ÝÝÝÑ 1C

exhibits rXs as self dual, that is, it is an evaluation map. But in Snn , X �X
TrXÝÝÑ � and

its dual span �
yTrXÝÝÑ X � X are an evaluation-coevaluation pair. This remains true on

passing to their actions, proving self-duality as required. �

Example 4.18. For �2 ¤ m ¤ n, the infinity category Smn is m-semiadditive. This is
an immediate consequence of the above corollary, as we have seen that Smn has m-finite
colimits (n-finite, even) and that the monoidal product on Smn restricts to an action of
Smm on Smn that preserves m-finite colimits variable-wise.

The strategy to prove Proposition 4.15 is to identify the described transformation with
the TrFmX of Hopkins and Lurie. The proof will ultimately involve finding equivalent
expressions of the various factors, and will be done in several steps.

Proposition 4.19. Consider an infinity category C satisfying the standing hypothesis
(Hypothesis 4.3)and an n-finite space X. Denote by X

p
ÝÑ � the map to the terminal

object (in Sn), then the induced

p!p
� � rXs

rps
ÝÑ r�s � 1C
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is a counit of the adjunction p! % p�.

Proof. To see that rps is a counit to the (a-priori known to exist) adjunction p! % p�, it

suffices to show that its adjoint �rps : p� Ñ p� is invertible. This is computed by applying
the functor p� and precomposing by its unit.

The adjunction p! % p� in question is an adjunction colimX % p�qX , and the unit is
the p�q Ñ pcolimX �qX , given by the colimit cocone maps. We have already calculated
this to be the transformation rixsxPX whose component at an x P X is the action of the
canonical colimit cocone map ix of Construction 2.12.

Thus, the adjoint �rps is such that its evaluation at any x P X is given by the composition
rps � rixs � rp � ixs � 11C (as ix is a section of p). In particular, it is object-wise an
equivalence in FunpC, CXq � FunpX, FunpC, Cqq, and hence an equivalence as desired. �

Proposition 4.20. Consider an infinity category C satisfying the standing hypothesis
(Hypothesis 4.3), and an pn � 1q-finite space X. Denoting by p : X Ñ � the map to the
point, the induced

1C � r�s
rpps
ÝÑ rXs � p!p

�

is a unit for an adjunction p� % p! , that is, exhibits X as C-ambidextrous.

Proof. As C is pn� 1q-semiadditive, the inductive construction of [HopLur13] constructs
a νkX that is a counit of an adjunction p� % p!. Let µkX be a unit compatible with it, we
will show that µkX � rpps.

Proposition 4.11 (that is, [HopLur13, Proposition 5.1.8]), which characterizes ambidex-
terity in terms of the trace form asserts that

TrFmX : rXs � rXs � p!p
�p!p

� p!ν
k
Xp

�

ÝÝÝÝÑ p!p
� εXÝÑ 1C

exhibits rXs as self dual in FunpC, Cq. Here, εX is a counit to the adjunction p! % p�. We
know from Proposition 4.19 that rps is such a counit, so we may as well set εX � rXs.

To identify the maps rpps and µkX in the monoidal category FunpC, Cq, it suffices to
identify their duals. The dual of pp is just p, so the dual of rpps is rps as taking the action
is compatible with duals. The dual of µkX is computed as

rXs � rXs � 1C
rXsµkXÝÝÝÝÑ rXs � rXs

TrFmXÝÝÝÝÑ 1C

which expands as

p!p
� p!p

�µkXÝÝÝÝÑ p!p
�p!p

� p!ν
k
Xp

�

ÝÝÝÝÑ p!p
� rps
ÝÑ 1C

The first two maps in the sequence are just p! applied to the two composable maps
in one of the triangle identities for p� % p!. Thus, rps is a composition of the entire
sequence, that is, rps is a dual of µkX as well. As µkX and rpps, have the same duals, they
are equivalent, and consequently rpps is a unit for an adjunction as desired. �

So far we have been concerned with the action of objects, that is the endomorphisms
p!p

� of C induced by a p : X Ñ �. We now extend this to a description of f!f
� for more

general f : X Ñ Y .
We expect this to be a functor CY Ñ CY . One might expect this to derive from an

action on CY . This can be made precise using the straightening equivalence.

Definition 4.21. Recall that the straightening equivalence (cf. [Cis19, Corollary 6.5.9])

StX : SäX
�
ÝÑ FunpX,Sq

restricts to a
StX : SnäX Ñ FunpX,Snq
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for any n-finite space X11 (by a Serre long exact sequence argument).
Further, we denote the composite induced by Sn ãÑ Sn�1

n as

�StX : SnäX Ñ FunpX,Snq Ñ FunpX,Sn�1
n q �

�
Sn�1
n

�X
(or simply sSt when X is clear from context)

Notation 4.22. For a map f : X Ñ Y in Sn, we denote by Stf : Y Ñ Sn its straight-
ening, and by �Stf : Y Ñ Sn�1

n the further composite with the inclusion into Sn�1
n , which

computes the image of f under sSt.
Construction 4.23. For an infinity category C satisfying the standing hypothesis (Hy-
pothesis 4.3), the action of Sn�1

n on C induces for every n-finite space Y an action of

pSn�1
n q

Y
on CY point-wise. As colimits in functor categories are computed object-wise,

this action also preserves n-finite colimits in each variable.

For an f : X Ñ Y , the action of �Stf on an Y
F
ÝÑ C can be explicitly computed as���Stf�F�y � ��Stf pyq� pFyq � rXys pFyq

Proposition 4.24. For an infinity category C satisfying the standing hypothesis (Hypoth-
esis 4.3), and a f : X Ñ Y of n-finite spaces, we have an identification��Stf� � f!f

� : CY Ñ CY

Proof. We describe a map f!f
� Ñ

��Stf� that will be shown to be an equivalence. Form
the base change

X �Y X X

X Y

g1

g

f

f
{

and let δ : X Ñ X �Y X be the diagonal of f . This is a morphism in the slice SnäX
(where X�Y X is given structure map g), and thus defines a morphism �X � St1X

δ
ÝÑ Stg.

As straightening is compatible with base change, we can identify Stg � f�Stf . More
explicitly, we have a(n essentially) commutative diagram

SnäY FunpY,Snq

SnäX FunpX,Snq

�

f�

�

f�

so that the two images of f are identified.

Consequently, one gets a map 1CX
rδs
ÝÑ

��Stg� � �
f��Stf� in FunpCX , CXq. Precomposing

with f� provides a f�
rδsf�

ÝÝÝÑ
�
f��Stf� f� in FunpCY , CXq. This last term is itself just

11And further in fact, to a map on the m-truncated maps Sn,mäX Ñ FunpX,Smq
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f�
��Stf�, in light of the diagram

CY Sn�1
n � CY CY

CX Sn�1
n � CX CX

f�

b

f�

b

f�

r�Stfs

rf��Stfs

f��Stf�1CX

�Stf�1CY

The map f�
rδsf�

ÝÝÝÑ f�
��Stf� is adjoint to a f!f

� Ñ
��Stf�, which we will show is an

equivalence.

This can be done point-wise in F P CY . We must show that f�F rδsf�F
ÝÝÝÝÑ f�

��Stf�F
exhibits

��Stf� : Y Ñ C as the left Kan-extension of f�F � F �f : X Ñ C along f . By the
formula for constructing left Kan-extensions along maps between spaces of Lemma 2.17,
it suffices to check that for every y P Y , the map exhibits���Stf�F�y � rXys pFyq � colim pf�Fq |Xy

in C, or in other words, that

pFyqXy � pf�Fq |Xy
rδs
ÝÑ prXysFyqXy

is a colimit cocone (in FunpXy, Cq).
To see this, note that the restriction of rδs to Xy is given by the map induced by r�s on

the restriction of δ to Xy. But this was defined by applying the straightening construction
to X Ñ X �Y X over X. Its restriction to Xy is thus given by straightening the map
given by pulling X Ñ X �Y X to a map over Xy. This map is simply the diagonal
Xy Ñ Xy�Xy of Xy. We have already seen that the straightening of this map is just the
canonical cocone pixqxPXy of Construction 2.12. Thus, upon taking the action on Fy P C,
we get precisely the colimit cone as desired, proving the claim. �

Construction 4.25. Consider a morphism f : X Ñ Y in Sn,pn�1q. We have the span in
SnäY .

X

Y X

Y

f 1X

1Y f

Straightening converts this into a span in FunpY,Snq

Stf

�Y Stf

π
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The wrong way map is pn�1q-truncated. Recall from Proposition 1.26 that forming spans

is compatible with exponentials. Thus this is equivalently a morphism in pSn�1
n q

Y
�

Span
�
SYn ,SYn,pn�1q

	
which we denote as

� pf	
Y

: �Y Ñ �Stf .
Definition 4.26. (cf. [Har20, discussion before Lemma 3.11]) For an infinity category
C satisfying the standing hypothesis (Hypothesis 4.3), and a map f : X Ñ Y in Sn,pn�1q,

denote the transformation the action of
� pf	

Y
induces by� pf�

Y
: 1CY Ñ

��Stf� � f!f
�

Proposition 4.27. (cf. [Har20, Lemma 3.12]) For an infinity category C satisfying the
standing hypothesis (Hypothesis 4.3), and a map f : X Ñ Y in Sn,pn�1q, the so defined

transformation
� pf�

Y
: 1CY Ñ f!f

� is a unit for an adjunction f� % f!, that is, exhibits f

as C-ambidextrous.

Proof. We must show that for X
F
ÝÑ C, Y G

ÝÑ C the composite

HomCX pf
�G,Fq

pf!qf�G,F
ÝÝÝÝÝÑ HomCY pf!f

�G, f!Fq
pr pfs

Y
Gq

�

ÝÝÝÝÝÝÑ HomCY pG, f!Fq

is an equivalence. This is a family of maps functorial in F ,G and compatible with
colimits in the G-variable. We have seen in Lemma 3.17 that FunpY, Cq is generated
under Y -indexed colimits, so it suffices to consider the case where G is y!C, for an object
C of C and an object � � tyu

y
ÝÑ Y of Y .

Remark 4.28. Assuming for the moment that
� pf�

Y
is indeed a unit for f� % f!, then for

any y P Y the composite

1C
ηy
ÝÑ y�y!

y�r pfs
Y
y!

ÝÝÝÝÝÑ y�f!f
�y!

is a unit for the composite adjunction f�y! % y�f!, where ηy is a unit for y! % y�.

Lemma 4.29. The converse is true. That is, if for every object y P Y , the composite

λ : 1C
ηy
ÝÑ y�y!

y�r pfs
Y
y!

ÝÝÝÝÝÑ y�f!f
�y!

is a unit for an adjunction f�y! % y�f!, then
� pf�

Y
is a unit for an adjunction f� % f!.

Proof. (of the lemma) By the colimit generation property, as remarked above it suffices
to show that for every y P Y and C P C, the composite

HomCX pf
�y!C,Fq

pf!qf�y!C,FÝÝÝÝÝÝÑ HomCY pf!f
�y!C, f!Fq

pr pfs
Y
y!Cq

�

ÝÝÝÝÝÝÝÑ HomCY py!C, f!Fq

is an equivalence. For this, note that there is a commutative square

HomCY pf!f
�y!C, f!Fq HomC py

�f!f
�y!C, f!y

�Fq

HomCY py!C, f!Fq HomC py
�y!C, f!y

�Fq

�
y�r pfs�

Y
y!C
	�

pr pfs
Y
y!Cq

�

py�qy!C,f!F

py�qf!f�y!C,f!F
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fitting into a diagram

HomCX pf
�y!C,Fq HomCY pf!f

�y!C, f!Fq HomC py
�f!f

�y!C, f!y
�Fq

HomCY py!C, f!Fq HomC py
�y!C, f!y

�Fq

HomCpC, f!y
�Fq

�
y�r pfs�

Y
y!C
	�

pr pfs
Y
y!Cq

�

py�qy!C,f!F

py�qf!f�y!C,f!F

ηy

�

λ

pf!qf�y!C,F

The total composite HomCX pf
�y!C,Fq Ñ HomCpC, f!y

�Fq is just the adjunction map
for f�y! % f!y

� and hence invertible. The map HomCY py!C, f!Fq Ñ HomCpC, f!y
�Fq is

the adjunction map for y! % y� and is thus invertible as well. Consequently, the map
λ is invertible. The invertiblity of λ for arbitrary y and C is precisely what we need to
conclude the lemma. �

To see that the composite λ in the hypothesis of the lemma is indeed a unit, consider
for arbitrary y P Y and C P C the pullback square

Xy X

tyu Y

ιy

fy

y

fσ
{

The identification y�
��Stf� � �

y��Stf� y� � rXys y
� can be written in terms of the Beck-

Chevalley transformation BC rσs : pfyq! ι
�
y Ñ y�f!. Explicitly, the inverse of BC rσs defines

the equivalence as

y�
��Stf� � y�f!f

� BCrσs�1f�

ÝÝÝÝÝÝÑ
�

pfyq! ι
�
yf

� � pfyq! f
�
y y

� � rXys y
�

and in particular it is such that

y�

y�
��Stf� rXys y

�

rxfysy�y�r pfs
Y

�

Thus the second map in the composition defining λ, y�
� pf�

Y
y! can be identified with the

composite

y�y!

rxfysy�y!
ÝÝÝÝÝÑ pfyq! pfyq

� y�y! � pfyq! pιyq
� f�y!

BCrσsf�y�

ÝÝÝÝÝÝÑ y�f!f
�y!

In particular, this fits into a diagram

1C y�y! y�f!f
�y!

pfyq! pfyq
� pfyq! pfyq

� y�y! pfyq! pιyq
� f�y!

ηy y�r pfs
Y

rxfysy�y!
�

BCrσsf�y�rxfys

pfyq!f
�
y η

y

and so equivalently we must show that the composite

ϕ : 1C
rxfys
ÝÝÑ pfyq! pfyq

� pfyq!pfyq
�ηy

ÝÝÝÝÝÝÝÑ pfyq! pfyq
� y�y! � pfyq! pιyq

� f�y!
BCrσsf�y!
ÝÝÝÝÝÝÑ y�f!f

�y!

is a unit for f�y! % y�f!.
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To do so, recall that BC rσs is defined as the adjoint of y! pfyq! ι
�
y � f! pιyq! ι

�
y

f!ε
ιy

ÝÝÝÑ f!,

where ηιy , ειy are unit and counit for pιyq! % ι�y . Explicitly, this is12

pfyq! ι
�
y

ηypfyq!ι
�
y

ÝÝÝÝÝÑ y�y! pfyq! ι
�
y � y�f! pιyq! ι

�
y

y�f!ε
ιy

ÝÝÝÝÑ y�f!

Similarly, the Beck-Chevalley map of the transpose σt of the pullback square σ is given
by

pιyq! f
�
y

pιyq!f
�
y η

y

ÝÝÝÝÝÑ pιyq! f
�
y y

�y! � pιyq! ι
�
yf

�y!
ειyf�y!ÝÝÝÝÑ f�y!

There is a commutative diagram

f�y f�y y
�y! ι�yf

�y!

ι�y pιyq! f
�
y ι�y pιyq! f

�
y y

�y! ι�y pιyq! ι
�
yf

�y! ι�yf
�y!

�ι�y pιyq!f
�
y η

y

�f�y η
y

ηιyf�y y
�y!ηιyf�y ηιy ι�y f

�y!

ι�y ε
ιyf�y!

whose bottom row is precisely ι�yBC rσ
ts. Consequently, upon applying pfyq!, this can be

seen to fit into

1C pfyq! f
�
y pfyq! ι

�
y pιyq! f

�
y

y�f!f
�y!

pfyq! f
�
y y

�y! pfyq! ι
�
yf

�y!

rxfys

pfyq!f
�
y η

y

�

pfyq!η
ιyf�y

pfyq!ι
�
yBCrσts

BCrσsf�y!

BCrσsBCrσts

and thus the composite λ (equivalently, ϕ) can be further identified with

φ : 1C
rxfys
ÝÝÑ pfyq! f

�
y

pfyq!η
ιyf�y

ÝÝÝÝÝÝÑ pfyq! ι
�
y pιyq! f

�
y

BCrσsBCrσts
ÝÝÝÝÝÝÝÑ y�f!f

�y!

Lemma 4.30. Consider an adjunction

C D
F

G

%

and equivalences F α
ÝÑ F 1,G β

ÝÑ G 1. Then, if η, ε are unit and counit for F % G, the
composites

1C
η
ÝÑ GF βα

ÝÑ
�

G 1F 1

F 1G 1 α�1β�1

ÝÝÝÝÑ
�

FG ε
ÝÑ 1D

are unit and counit for a F 1 % G 1.

12Or equivalently, pfyq! ι
�
y

pfyq!ι
�

y η
f

ÝÝÝÝÝÝÑ pfyq! ι
�
yf

�f! � pfyq! f
�
y y

�f!
εfyy�f!ÝÝÝÝÝÑ y�f!
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Proof. (of the lemma) One checks the triangle identities. We have the diagram

GFG

G 1F 1G GF 1G 1

GFG G 1F 1G 1 GFG

G GFG 1 G 1FG G

G 1 G 1

βαG Gαβ

G1F 1β βF 1G1

βαG1

ηG1

G1α�1β�1

G1ε β

βFG
GFβ

β

ηG

βαG Gα�1β�1

Gε

from which one sees that the precomposition of the triangle map for G 1 with β is the
postcomposition of β with the triangle map of G, that is, β itself. As β is invertible, one
concludes that 1G1 is a composition of the triangle map as required. A similar argument
demonstrates the triangle identity for F 1. �

Instancing the lemma with α � BCrσts, β � BCrσs (and the other variables instanced
so that this makes sense), it therefore in fact suffices to show that the composite of the
first two maps in the composition defining φ (call this composition ψ) is a unit for an

adjunction pιyq! f
�
y % pfyq! ι

�
y . However, we have seen in Proposition 4.20 that

� pfy� is a

unit for f�y % pfyq!. Thus this map ψ is just the composite unit for the adjunctions

C CXy CX
f�y pιyq!

ι�ypfyq!

% %

and is thus a unit as desired, proving the claim. �

For an infinity category C satisfying the standing hypothesis (Hypothesis 4.3)and a map
f : X Ñ Y between n-finite spaces, we have already seen that f is weakly ambidextrous,
in particular there is a νkf produced by the inductive construction of [HopLur13].

This is defined in terms of a µkδ , which is a unit for an adjunction δ� % δ! (where
δ : X Ñ X �Y X is the diagonal of f).

But Proposition 4.27 above establishes that the transformation
�pδ�

Y
is also a unit for

such an adjunction, and in particular homotopic to µkδ . Our approach will be to use
�pδ�

Y

as a replacement for µkδ to define a transformation νf in an identical manner, which can
be identified with the νkf of [HopLur13].

Definition 4.31. Consider an infinity category C satisfying the standing hypothesis
(Hypothesis 4.3)and a morphism f : X Ñ Y in Sn. Denote by δf the diagonal of f . Then
we define a transformation νf by forming the pullback square σ

X �Y X X

X Y

π2

π1

f

fσ
{
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and taking the composite

νf : f�f!
BCrσs�1

ÝÝÝÝÝÑ
�

π1!π
�
2

π1!rxδfsX�Y X
π�2

ÝÝÝÝÝÝÝÝÝÝÑ π1!δf !δ
�
fπ

�
2 � 1CX � 1CX � 1CX

Observation 4.32. Consider an infinity category C satisfying the standing hypothesis
(Hypothesis 4.3). For any morphism f between n-finite spaces, the transformation νf is
equivalent to the transformation νkf produced by the construction of [HopLur13].

In particular, a morphism f in Sn is C-ambidextrous if and only if the transformation
νf : f�f! Ñ 1CX is a counit of an adjunction f� % f!.

Proposition 4.33. (cf. [Har20, Lemma 3.11]) For an infinity category C satisfying the
standing hypothesis (Hypothesis 4.3), and a map f : X Ñ Y in Sn,pn�1q, the transfor-

mation rY s
r pfs
ÝÝÑ rXs induced by the dual span pf to f in Sn�1

n can be identified with the
composite

rY s � q!q
�

q!r pfs
Y
q�

ÝÝÝÝÝÑ q!f!f
�q� � p!p

� � rXs

where p and q are the structure maps as in the following diagram.

X Y

Z

p q

f

Proof. The first observation is that we can use the fact that the action functor in question,
r�s : Sn�1

n Ñ FunpC, Cq computes with n-finite colimits. Applying it to q! � colimY for

instance, we rewrite q!

� pf�
Y
q�.

Lemma 4.34.
�
q!

� pf	
Y

�
� q!

� pf�
Y
q�

Proof. (of the lemma) The basic idea is the computation that,

q!

� pf�
Y
q� � colimyPY

�� pf�
Y
q�
	
y
� colimyPY

�
y�
� pf	

Y

�
y�q� �

�
colimyPY y

�
� pf	

Y

�
�
�
q!

� pf	
Y

�
More precisely, there is an (essentially) commutative square

Fun pY,Sn�1
n q Sn�1

n

Fun pY, Fun pC, Cqq Fun pC, Cq

r�s� r�s

q!

q!

such that the image of
� pf	

Y
in Fun pY, Fun pC, Cqq is precisely

� pf�
Y
q�. �

It light of the lemma, it suffices to show that pf can be identified with the colimit of� pf	
Y

in Sn�1
n .

� pf	
Y

was obtained as the image under the straightening construction

SnäY
St
ÝÑ
�

Fun pY,Snq, of the span of spaces over Y ,

X

Y X

Y

f

f
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This can be alternatively described in terms of an infinity category of spans of spaces

over Y . If we let
�
SnäY

	:
denote the weak CoWaldhausen structure on SnäY given

by the pn� 1q-truncated maps over Y , then we have the correspondence

Lemma 4.35. Under the straightening construction SnäY
St
ÝÑ
�

Fun pY,Snq,
�
SnäY

	:
corresponds to the weak CoWaldhausen structure

�
SYn
�:

given by the morphisms that are
object-wise pn� 1q-truncated.

Proof. (of the lemma) Consider a map over Y

A B

Y

f

p q

For every object tyu
y
ÝÑ Y , the map on the fibers Ay Ñ By can be identified with the

component at y of the image of f under straightening. This fits into a composition of
pullbacks

Ay By tyu

A B Y

qy

y

qf

{

fy

{

Consequently, if A Ñ B is pn � 1q-truncated, so is each Ay Ñ By. Further, the fiber of
A Ñ B over an object b of B is a fiber of Ay Ñ By, for y � qb. It follows that dually, if
each Ay Ñ By is pn� 1q-truncated, AÑ B is as well. �

We have already seen in Lemma 2.10 that the colimit of a functor Y Ñ Sn can be
identified with the total space of the Kan fibration over Y that it classifies. This is in
fact an incarnation of a commutative diagram

SnäY Fun pY,Snq

Sn
colimπ

St

This is also a commutative diagram of weak CoWaldhausen infinity categories, and by
the lemma the top map is an equivalence still. Thus on passing to spans we have

Span

�
SnäY ,

�
SnäY

	:

Fun pY,Sn�1

n q

Sn�1
n

colimπ

St

where the map on the right is indeed the colimit map, as we have seen in Observation 2.28
that the inclusion Sn Ñ Sn�1

n preserves and detects Y -indexed colimits.
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Thus in order to compute the colimit of
� pf	

Y
, it suffices to compute the image of

X

Y X

Y

f

f

under the map forgetting the last map to Y , which produces exactly the span pf as
desired. �

Notation 4.36. Consider an infinity category C satisfying the standing hypothesis (Hy-
pothesis 4.3). The data of an action also includes the data of an “associativity” isomor-
phism, that we denote as m.

More explicitly, we denote for n-finite spaces X, Y the component

mX,Y : rX � Y s
�
ÝÑ rXs � rY s

of m at pX, Y q13, a family of equivalences functorial in X and Y .

We are now ready to prove our desired criterion. Recall that this was,

Proposition 4.37. (cf. [Har20, Propostion 3.17]) Let C be an infinity category satisfying
the standing hypothesis (Hypothesis 4.3). Then, C is n-semiadditive if and only if for
every n-finite space X, the transformation

rXs � rXs
m�1
X,X

ÝÝÝÑ
�

rX �Xs
rTrX s
ÝÝÝÑ 1C

exhibits rXs as self dual in FunpC, Cq.

Proof. What we will do is identify this map with the trace form TrFmp, where p : X Ñ �
is the map to the point. We will then be done by Proposition 4.11, the criterion of
[HopLur13, Proposition 5.1.8] relating ambidexterity with the trace form being a self-
duality evaluation map.

Lemma 4.38. For an infinity category C satisfying the standing hypothesis (Hypothe-
sis 4.3), and n-finite spaces X, Y , form the pullback square

X � Y Y

X �

π2

π1

pX

pYσ
{

Denoting by pZ for a space Z the map Z Ñ �, the transformation

rX � Y s
mX,Y
ÝÝÝÑ

�
rXs � rY s

can be identified with

rX � Y s � ppX�Y q! p
�
X�Y � ppXq! pπXq! π

�
Y p

�
Y

ppXq!BCrσsp�YÝÝÝÝÝÝÝÝÑ ppXq! p
�
X ppY q! p

�
Y � rXs � rY s

13Recall that the monoidal structure on Sn�1
n acts as the Cartesian product level-wise.
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Proof. (of the lemma) Upon writing X � colimX �, Y � colimY �, using the compatibility
of actions with n-finite colimits and the identification r�s � 1C, one sees that both maps
are equivalent to the “Fubini isomorphism”

colimX�Y 1C � colimX colimY 1C

�

Returning to the main proof, recall from Definition 4.31 that νp was defined by forming
the diagram

X �X X

X �

π2

π1

p

pσ
{

and taking the composition

νp : p�p!
BCrσs�1

ÝÝÝÝÝÑ
�

π1!π
�
2

π1!rpδsX�X
π�2

ÝÝÝÝÝÝÝÝÑ π1!δ!δ
�π�2 � 1CX � 1CX � 1CX

with δ being the diagonal of X. The composite pp!νpp
�q � mX,X can thus be identified

with

p!π1!

�pδ�
X�X

π�2p
� � q!

�pδ�
X�X

q�

where by q we denote pX�X : X �X Ñ �.
But we already know from Proposition 4.33 that this last map is equivalent to the map

induced directly by the dual span
�pδ� : rX �Xs Ñ rXs. Thus

rps � pp!νpp
�q �mX,X � rps �

�pδ� � �p � pδ� � rTrXs

Consequently we may identify the transformation of the hypothesis, rTrXs �m
�1
X,X with

rps � pp!νpp
�q. We have proved in Proposition 4.19 that rps : p!p

� Ñ 1C is a counit for the
adjunction p! % p�, and in Definition 4.31 that νp is homotopic to the νkp of [HopLur13].

Thus rps � pp!νpp
�q and in turn rTrXs � m

�1
X,X is homotopic to the TrFmX of [HopLur13],

as desired. We may thus conclude the proposition. �

As remarked before when discussing Proposition 4.15, from the proposition we have
the corollaries that infinity categories with n-finite colimits and a suitable action of Snn
are n-semiadditive, and in particular that each Smn is m-semiadditive.

We conclude this section by quoting without proof another succinct criterion for semi-
additivity.

Corollary 4.39. [Har20, Cor 3.18] For an infinity category C satisfying the standing
hypothesis (Hypothesis 4.3), C is n-semiadditive if and only if for every n-finite space X,

the canonical colimit cocone of Construction 2.12 �X
pixq
ÝÝÑ XX induces a cone�pix� : rXsX Ñ r�sX

which is a limit cone, establishing rXs � limX 1C in FunpC, Cq.
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5. The universal property of Smn
The main result of [Har20] is the following universal property of Smn . Recall from

Notation 2.30 that for infinity categories C and D with n-finite colimits, we denote by
FunκnpC,Dq the full subcategory of FunpC,Dq spanned by the functors preserving n-finite
colimits.

Theorem 5.1. (cf. [Har20, Theorem 4.1]) Take integers �2 ¤ m ¤ n, and C an m-
semiadditive infinity category with n-finite colimits. Then, evaluation at the point defines
an equivalence

ev� : Funκn pSmn , Cq
�
ÝÑ C

That is, Smn is the universal m-semiadditive infinity category admitting n-finite colimits
generated by the point.

Remark 5.2. This universal property, and most of the rest of this section is due to [Har20].
The proof of the universal property itself is a clever yet somewhat technical use of partic-
ular Kan-extensions to demonstrate that the evaluation functor factors through several
equivalences.

We will instead try to demonstrate how this universal property can be used to char-
acterize higher semiadditivity, and to establish that the infinity category Catκn of n-
semiadditive infinity categories and n-finite colimit preserving functors is itself n-semiadditive.
Regardless, we will mostly follow Harpaz throughout, except that we chose to provide a
slightly different proof of the fact that Catκn is n-semiadditive.

5.1. The criterion for higher semiadditivity.

Corollary 5.3. Every m-semiadditive infinity category with m-finite colimits has a canon-
ical Smm -action preserving m-finite colimits variable-wise.

Proof. (of the corollary) We transfer along the equivalence of the theorem the canonical
pre-composition action of Smm on Funκm pSmm , Cq �

We have thus finally established (one implication from Corollary 4.17 of the last section
and the other by Corollary 5.3 above) our characterization of n-semiadditivity as having
an action of Snn compatible with n-finite colimits. We can promote this to an equivalence
of categories, essentially identifying the appropriate notion of functor between the first
(Snn -module functors) with those of the second (functors preserving n-finite (co)limits).

Definition 5.4. For an integer n ¥ �2, let SAddn be the full subcategory of Catκn
spanned by the n-semiadditive infinity categories. It can be identified as the infinity
category of n-semiadditive infinity categories and functors preserving n-finite (co)limits.

Notation 5.5. We denote by U : ModSnn pCatκnq Ñ Catκn the forgetful functor.

Observation 5.6. By our characterization of n-semiadditivity, we see that U induces an

essentially surjective ModSnn pCatκnq
U
ÝÑ SAddn.

Our goal is to show that this map is an equivalence. It is essentially surjective, it
only remains to show that it is fully-faithful. As it is the right adjoint in a free-forgetful
adjunction, we need only equivalently show that the counit of this adjunction is invertible.

Notation 5.7. Let F :� Snn bCatκn p�q : Catκn Ñ ModSnn pCatκnq denote the left adjoint
to U .

Denote by η and ε respectively, the unit and counit of this adjunction.

Proposition 5.8. The counit ε is invertible, that is, the right adjoint U is fully-faithful.



48 AREEB S.M.

Proof. We must show for an arbitrary Snn -module C, that the counit map

εC : Snn bCatκn UC Ñ C
is invertible in ModSnn pCatκnq. As U is conservative, it suffices to check that the induced
functor UεC of underlying infinity categories is invertible.

Lemma 5.9. The unit map at an infinity category C,

ηC : C Ñ U
�
Snn bCatκn C

�
is invertible if and only if C is n-semiadditive.

Proof. (of the lemma) First, if the unit map is an equivalence, then C is n-semiadditive
as U

�
Snn bCatκn C

�
necessarily is. For the converse, let C be n-semiadditive.

For an arbitrary D P Catκn , restriction along ηC defines a

Funκn
�
U
�
Snn bCatκn C

�
,D
� η�CÝÑ Funκn pC,Dq

In light of the adjunction equivalence Funκn
�
U
�
Snn bCatκn C

�
,D
�
� Funκn pSnn ,Funκn pC,Dqq,

this restriction can be identified with the evaluation

ev� : Funκn pSnn ,Funκn pC,Dqq � Funκn
�
U
�
Snn bCatκn C

�
,D
� η�CÝÑ Funκn pC,Dq

which the universal property of Snn guarantees is an equivalence. By the Yoneda lemma
applied to Catκn , the restriction being an equivalence for arbitrary D implies that ηC is
an equivalence, proving the converse. �

UεC is (by the triangle identity) a retract of ηUC. As UC is n-semiadditive, the lemma
tells us that ηUC is invertible, and hence its retract UεC is as well. By conservativity, the
counit is invertible as desired. �

Corollary 5.10. U : ModSnn pCatκnq Ñ Catκn defines an equivalence

ModSnn pCatκnq
�
ÝÑ SAddn

Corollary 5.11. The inclusion SAddn � Catκn has both a left and a right adjoint14, given
on objects as C ÞÑ Snn bCatκn C and C ÞÑ Funκn pSnn , Cq respectively.

5.2. Example: Catκn is n-semiadditive. As a final demonstration of the utility of this
universal property, we show how it can be used to prove that Catκn is n-semiadditive.
This is also demonstrated in [Har20], but we provide a slightly different proof.

Proposition 5.12. (cf. [Har20, Proposition 5.26]) Consider an integer n ¥ �2. The
infinity category Catκn is n-semiadditive.

Proof. We will prove by induction on an integer m, that Catκn is m-semiadditive for
every �2 ¤ m ¤ n. The case for m � �2 is known to hold a-priori, so we reduce to
having to show that for m ¥ �1, Catκn is m-semiadditive under the assumption that it
is pm� 1q-semiadditive.

Our first observation is that since an infinity category is k-semiadditive if and only
if its opposite is, it suffices to do the same for Catop

κn . Catκn is complete, with limits
computed as in Cat8. Hence Catop

κn is cocomplete, and in particular has a canonical
action of S. Explicitly, this is computed as rXs C � colimX C (in Catop

κn). As in Catκn
we can identify Fun pX, Cq � limX C15, we ultimately have rXs C � CX . Further, the
action of a u : X Ñ Y in S on C is the map between the respective colimits given by
the action of u on the indices. In terms of the identifications of the form rXs C � CX ,

14Transferred from the left and right adjoints to the forgetful functor U : ModSn
n
pCatκn

q Ñ Catκn .
15The cone maps being given by evaluation.
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the action rus C : rXs C Ñ rY s C is the map in Catop
κn corresponding to the pullback map

u� : CY Ñ CX in Catκn .
In any case, we now work in the context of an pm� 1q-semiadditive cocomplete infinity

category Catκn . Thus Theorem 5.1, Harpaz’s universal property of Sm�1
m (cf. [Har20,

Theorem 4.1]) asserts that evaluation at the point defines an equivalence

ev� : Funκm
�
Sm�1
m ,Catop

κn

� �
ÝÑ Catop

κn

and thus Catop
κn inherits an action of Sm�1

m compatible with m-finite colimits variable-wise
(by transferring the precomposition action as before). Or put differently, Catop

κn satisfies
the standing hypothesis (Hypothesis 4.3) of the previous section.

Our strategy now will be to appeal to Proposition 4.37 of the previous section, which
in our case will guarantee that Catop

κn is m-semiadditive as long as we can show that for

every X P Sm�1
m , rTrXs exhibits rXs as self dual (in Funκm

�
Catop

κn ,Cat
op
κn

�
). For this, we

will describe the action of a span Y
q
ÐÝ Z

p
ÝÑ X.

The first observation is that both the action of S and Sm�1
m on Catop

κn are induced by
transferring precomposition actions along equivalences given by evaluating at the point.
In particular they fit into a diagram,

Funκm
�
Sm�1
m ,Catop

κm

�
Catop

κm

Funκm
�
Sm,Catop

κm

�
Fun!

�
S,Catop

κm

�
ev�

ev�ev�

and thus agree on the common restrictions to Sm (justifying our use of the notation r�s
for both).

Next, we show that rXs is indeed self-dual (although we will not do so by showing
directly that rTrXs is a coevaluation). The fact each C P Catκm has m-finite colimits is

a guarantee of sufficiently many colimits to let us assign to every span Y
q
ÐÝ Z

p
ÝÑ X of

m-finite spaces the map

τq,p : CX p�
ÝÑ CZ q!ÝÑ CY

In light of the Beck-Chevalley property, the aforementioned τ -construction is still compat-
ible with composition (up to equivalence). It is similarly compatible with the monoidal

structure (in light of the identifications CX�X �
�
CX
�X

), and thus preserves dualizable
objects and is also compatible with duals. Thus the map τδX ,p corresponding to TrX is
a coevaluation establishing rXs as self dual for every X. The only thing remaining is to
identify τδX ,p and rTrXs.

Lemma 5.13. For an infinity category C, the action on C of the dual span pf to an

pm� 1q-truncated f : X Ñ Y is a morphism in Catop
κm corresponding to CX f!ÝÑ CY given

by left Kan-extension along f .

Proof. We first show this for a special case, that of a morphism f : X Ñ Y between
pm� 1q-finite spaces X, Y . In Sm�1

m , the pm� 1q-finite spaces are dualizable, as both the
trace and its dual span are well defined. Thus we can speak of the monoidal dual of f

in Sm�1
m , and this is indeed seen to be pf . Thus, in particular, pf acts as the dual of the

action of f . The strategy will be to identify the morphism in Catκm corresponding to the
dual of rf s with f!. As we know already that rf s is the morphism in Catop

κm corresponding

to f�, it will follow that the action of pf can be identified with the morphism in Catop
κm

corresponding to f!.
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As we have just seen that for every object X there is an evaluation-coevaluation self
duality pair τp,δX , τδX ,p (where p is the map X Ñ �). The dual of rf s as the morphism
acting on a C P Catop

κm is the morphism in Catκm

rY s C
rY sτp,δXÝÝÝÝÝÑ rY s rXs2 C rY srf srXs

ÝÝÝÝÝÑ rY s2 rXs C
τδX,prXs
ÝÝÝÝÝÑ rXs C

this corresponds to the morphism in Catκm given by

CX
π�XÝÝÑ CX�Y p1Y �δY q!ÝÝÝÝÝÑ CX�Y�Y p1X�f�1Y q

�

ÝÝÝÝÝÝÝÝÑ CX�X�Y pδX�1Y q
�

ÝÝÝÝÝÝÑ CX�Y pp!q�ÝÝÝÑ CY

which by the colimit formula for left Kan-extensions can be seen to precisely compute
the left Kan-extension (point-wise). This establishes the special case.

Now, for a general pm� 1q-truncated f : X Ñ Y in Sm and a C P Catκm , we will check

that
� pf� C corresponds to a morphism CX Ñ CY in Catκm computing (point-wise) left

Kan-extension. For an object y P Y , consider the fiber

Xy X

tyu Y

ιy

fy

y

fσ
{

The square σ fits into a diagram

Xy

� X

� Y X

fy

y

ιy

f

σ

{

from which we see that the span �
fy
ÐÝ Xy

ιy
ÝÑ X is the composite pf �y. Thus in particular� pf� � rys is the action of this span.

This acts on C as r�s C rysC
ÝÝÑ rY s C

r pfsC
ÝÝÝÑ rXs C. Denoting by λ the morphism in Catκm

corresponding to the action
� pf� C in Catop

κm , the span thus acts as

CX λ
ÝÑ CY y��evy

ÝÝÝÝÑ C

and computes the action of λ at y P Y . However the span �
fy
ÐÝ Xy

ιy
ÝÑ X is also the

composition ιy � pfy and thus acts as rιys �
� pfy� C in Catop

κm . We know that ιy acts as ι�y and

by the special case of maps between pm� 1q-finite spaces we know that fy acts as pfyq!.

Thus the action is the map in Catop
κm corresponding to the morphism CX

ι�y
ÝÑ CXy pfyq!ÝÝÑ C

in Catκm . But as we have the Beck-Chevalley identification pfyq! ι
�
y � y�f!, we thus

have constructed an identification y�λ � y�f!. Therefore, λ acts as the (point-wise) left
Kan-extension, as desired. �

Consequently, by decomposing the span Y
q
ÐÝ Z

p
ÝÑ X as the composition of p and

the dual span to q, we see that it acts on an infinity category C as precisely the map
τq,p : rY s C Ñ rXs C in Catop

κm . Thus, denoting by p : X Ñ � the map to the point, we can
identify rTrXs and τδX ,p. This lets us conclude the inductive step by the trace criterion,
and therefore by induction the proposition. �
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