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ON A CHARACTERIZATION OF HIGHER SEMIADDITIVITY
AREEB S.M.

ABSTRACT. In [HopLurI3], M. Hopkins and J. Lurie introduce for m > —2, a notion
of m-semiadditivity. This generalizes the classical notion of a semiadditive (infinity)
category. Intuitively, m-semiadditive infinity categories are those in which limits and
colimits of diagrams indexed by m-finite spaces (that is, m-finite infinity groupoids) are
canonically equivalent. In [Har20], Y. Harpaz proves a universal property of the infinity
category of spans of n-finite spaces with m-truncated wrong way maps. This is used to
establish an equivalent characterization of m-semiadditivity in terms of a well behaved,
essentially unique action of this category of spans. This has the advantage of not only
providing a more succinct method of detecting m-semiadditivity, but also providing a
versatile structure to work with m-semiadditive infinity categories. In this thesis, we
survey this sequence of results.
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2 AREEB S.M.

INTRODUCTION

A 1-category C is called semiadditive when it is pointed, and for all finite families of
objects {X;},;, the map [[;.; Xi — [,e; Xi “represented by the diagonal matrix’[] is
invertible. Deconstructing this definition, this is asking that:

(1) The category C is pointed, that is, the map ¢§ — = is invertible.
(2) For all diagrams in C indexed by finite discrete categories, the canonical map
induced by the diagonal matrix from the colimit to the limit is invertible.

The second condition takes the form of asking that for all diagrams in C indexed by a
specified class of categories, there is a “canonical map” from the colimit to the limit that
has to be invertible. The first condition is also of this form, the class of categories here
just being the singleton comprising of the initial category.

Remark 0.1. The second condition is not strictly well-defined without the first condition
in context, as we need the notion of zero maps to even define the “map induced by the
diagonal matrix”. However, the first is also an instance of the second, as we may take
the finite indexing set to be empty.

So far our indexing categories have all been discretdﬂ We now look for a notion of
higher semiadditivity, for which we expand our class of index categories.

Our first pathology occurs when we consider index diagrams with non-invertible mor-
phisms. For instance, if we consider the simplest such example, A! and a pointed category
C, the colimit of an arrow A! — C is its target, and its limit is its source. The canonical
map from the colimit to the limit, which we will henceforth call the “Norm map” will
in fact turn out to be just the zero map. Therefore, asking for the norm maps to be
equivalences in such cases excludes most of our cases of interest, and we will therefore
restrict to indexing diagrams that are infinity groupoids (or equivalently, spaces).

For similar reasons, we will require that our indexing infinity groupoids are m-finite,
that is, that they have finitely many components (finite mp) and that each homotopy
group is finite as well. Indeed, even abelian categories and stable infinity categories, the
standard examples of semiadditivity have infinite products and coproducts that differ in
general.

Finite sets are the prototypical 0-finite spacesﬂ that is, infinity groupoids with finitely
many connected components and no n-morphisms for nonzero n. One can define in
the same manner the notions of pointed and semiadditive infinity categories. Then, as
limits and colimits of functors between nerves of 1-categories are computed in the 1-
categorical sense, a l-category is pointed or semiadditive if and only if it is so as an
infinity category. We call the property of semiadditivity henceforth 0-semiadditivity, the
property of colimits and limits of diagrams indexed by 0-finite spaces coinciding.

The (—1)-finite spaces are the empty space and the contractible ones. As the limit and
colimit of a diagram with contractible source can both be computed as the image of any
point, they are identified by the identity. Consequently, we can think of being pointed as
“(—1)-semiadditivity”. Similarly, as the (—2)-finite spaces are the contractible ones, we
can say that every infinity category is “(—2)-semiadditive”.

The work of Hopkins and Lurie in [HopLurl3], Section 4] introduces for each m, a
notion of m-semiadditivity. Intuitively, a category is m-semiadditive if for every diagram

'That is, the map | [,.; Xi — [ [;c; Xi determined by the composite X; — [ [,c; X; — [Les X5 = X;
being the identity if ¢ = j and the zero map otherwise.

2As limits and colimits are invariant under equivalences of the indexing diagrams, we can say the same
for indexing categories that are disjoint unions of contractible ones.

3For every integer m > —2, there is a notion of an m-finite space (recalled later on).
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in it indexed by an m-finite space, there is a “Norm map” from its colimit to its limit
that is an equivalence.

This notion is developed inductively. What is really provided is for each n, a criterion
for an n-semiadditive infinity category to be (n + 1)-semiadditive. In particular for a
diagram indexed by an n-finite space, to even define the norm map that we wish to be an
equivalence in the infinity category we consider, it is assumed that the infinity category
is (n — 1)-semiadditive.

In [Har20], Harpaz proves a universal property of a class of infinity category of spans.
To be precise, it is shown that the infinity category of spans n-finite spaces with m-
truncated wrong way maps is the free m-semiadditive category with colimits indexed
by n-finite spaces generated by a point. In particular, the infinity category of spans of
n-finite spaces is the free n-semiadditive infinity category, generated by a point.

The Cartesian symmetric monoidal structure on spaces induces a symmetric monoidal
structure on the category of spans of n-finite spaces, which can be shown to preserve
colimits indexed by n-finite spaces. Harpaz uses the universal property of the infinity
category of spans of n-finite spaces to show that the property of n-semiadditivity is
equivalent to the existence of a colimit compatible action of the category of spans of
n-finite spaces.

The equivalence of these characterizations is useful in practice, while n-semiadditivity
is a property of an infinity category, the action of the span category provides a useful
structure to work with n-semiadditive infinity categories.

1. SPANS IN INFINITY CATEGORIES
1.1. The definition of a span.

Definitions 1.1. A span (or correspondence) in an infinity category C is a diagram of

the form
A

7N

X Y

Thinking of infinity categories as quasicategories, a span in an infinity category is a A2
shaped diagram (where by A} we mean the k-th horn in the standard n-simplex A™).

If we distinguish X as the source and Y as the target, we call such a diagram a span
from X to Y and call the Z — X map the wrong way map. For convenience, we also call
the Z — Y map the right way map.

More generally, if K < C; is a class of morphisms (1-simplices) of C, we will call a span
in C a span in (C, K) if the wrong way map lies in K.

Remark 1.2. The notion of spans is due to Yoneda([Yon54]) and Bénabou([Bén67]). One
may recognize spans as being the diagram whose colimit gives pushouts, or as giving the
morphisms in a calculus of fractions.

A third application of spans is its use in describing “push-pull” behavior. A prototypical
example is that one has for a suitable pair (C,C') of an infinity category C and a subcat-
egory Cf, a functor F: C — D for some infinity category D and a functor G: C'*® — D,
such that G and F agree on objects. One then hopes to construct a functorial assignment

taking a span
Z
VN
X Y
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To the morphism
6x gz =Fz 2L Fy

We will work extensively with an instance of such a construction in our characterization
of semiadditivity.

1.2. Constructing an infinity category of spans. We would like to define an infinity
category of spans in (C, K). More precisely, we want an infinity category with objects
that of C but 1-morphisms from an object X to an object Y to be given by spans from
X toY in (C, K). The content of this section is primarily taken from [Har20, §2.1]. The
definitions are as in [Barl3].

Remark 1.3. We will work primarily with the model of quasicategories, despite trying
to remain stylistically model agnostic. However, a subcategory K of a quasicategory C
is a genuine sub-simplicial set. It will be convenient for us to work with an equivalence
invariant notion, so we recall the following definition.

Definitions 1.4. Call a morphism f: x — y in an infinity category C is a monomorphism
when the canonical commutative square

X == X
N I
X T> Y

is cartesian.

A functor F: C — D between infinity categories is faithful when for each pair of
objects X, Y of C, the induced map C(X,Y) — D(FX,FY) is a monomorphism in a
(suitably large) infinity category of spaces. In other words, every (homotopy) fiber of
C(X,Y) —» D(FX,FY) is contractible (intuitively, every morphism FX — FY has an
essentially unique preimage) or empty (Every morphism FX — FY has no preimage).

If there is a faithful functor F: C — D, we call C a subcategory of D and perform an
abuse of notation by writing C € D or C — D (leaving F implicit).

Remarks 1.5. It can be shown that a C — D is faithful if and only if it defines an
equivalence of C onto a subcategory on the nose (in the sense of being a sub-simplicial
set) of D.

In fact, it can also be shown that a F: C — D is faithful precisely when the induced
functor ho F: hoC — hoD on homotopy 1-categories is faithful, and the commutative
square

c—L 7D
|
hoCWhoD

is homotopy cartesian (where we have performed the standard abuse of notation of writing
A for the infinity category which is a nerve of a 1-category A).

Definition 1.6. A subcategory C < D is called wide when the inclusion induces an
equivalence C- =~ D~ on maximal sub-groupoids.

A morphism f of D is then said to belong to C (denoted f : C) if it is isomorphic in
the arrow category Fun(A'!, D) to a morphism in (the image of) Fun(A',C).

Notation 1.7. Given an infinity category C and a wide subcategory A, we call a span
in C a (C,.A)-span if the wrong way map belongs to A.
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The composition of a pair of spans in an infinity category C from X to Y and Y to Z
A B
X Y Z
is given by forming the pullback C':= A xy B and taking the outermost span in
C
A B
X Y A

We will define an infinity category Span(C, K') such that the composition of 1-morphisms
takes place in precisely this manner, and will require that the wrong way map in the
composite also belongs to K. The following definition ensures this.

Definition 1.8. A weak CoWaldhausen structure on an infinity category C is a wide
subcategory C', such that any diagram in C

X
|
B ——Y
where the map f belongs to CT, fits into a pullback square

A—L5 X

L b
B—'5Y

in C, such that the map g belongs to C' as well.
A weak CoWaldhausen infinity category is a pair (C,C"), of an infinity category C and
a weak CoWaldhausen structure C' on C.

Remark 1.9. The property of a wide subcategory C' of C being a weak CoWaldhausen
structure guarantees that every pair of spans in (C,C') such that the target of the first
is the source of the second has a “composition” in (C,C') in the aforementioned sense.
Indeed, given a weak CoWaldhausen infinity category (C,CT), one can define an infinity
category of spans in (C,C") which satisfies the properties we expect.

Examples 1.10. For any infinity category C, the maximal sub-groupoid C~ is the minimal
weak CoWaldhausen structure on C.

When C has pullbacks, then C itself defines the maximal weak CoWaldhausen structure
on C.

Construction 1.11. Given an infinity category C and a subcategory E of hoC, we
construct a subcategory Cg of C by forming the pullback

T

E —— ho(C
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Let F' < C; be a “class of fibrations”, that is a class of 1-morphisms containing all equiv-
alences, closed under compositions, such that pullbacks along morphisms in F' exist in C
and further, F' is closed under pullbacks. Then applying this construction to the subcat-
egory of hoC defined by F' (necessarily containing all objects) produces a CoWaldhausen
structure on C. Our primary examples will be constructed in this manner.

Notation 1.12. When A < (C; is a family of objects of an infinity category C, we will
denote by C4 the full subcategory of C obtained by applying the above [Construction 1.11|
to the full subcategory of hoC spanned by A.

We will construct our desired Span(C,C') as a quasicategory. We have already decided
that the O-simplices are the objects of C and the 1-simplices are given by spans in C whose
wrong way maps belong to CT. Intuitively, an n-simplex in a quasicategory is the data of
a composition of the n morphisms determined by the restriction to the spine. Recalling
the manner in which spans an n-simplex of Span(C, C") should correspond to a
diagram of pullbacks in C of the form

X(J,'n,
len XO n—1
XZ,n Xl,nfl XO n—2
X&,n X?JL*I Xl n—2 XO,nf‘S
Xnn PN AR AR Xoo

such that all the wrong way maps (the ones of form X;; — X, ;) all belong to CT.
We will proceed to turn this into a definition.

Definition 1.13. Recall that for an infinity category C, the Twisted Arrow Category
is the infinity category Tw(C) whose n-simplices are given by maps A™" x A" — C of
simplicial sets, and the action of simplicial operators given by pre-composition. This is
functorial in C by post-composition.

Furthermore, if C is (the nerve of) a l-category, then Tw(C) is the 1-category with
objects given by 1-simplices of C and morphisms f — g given by commutative diagrams

I

Q

e
&(—@ >

o

g

in C. In particular, Tw(A") is the poset with elements {(7,7) € [n] x [n] | i < j} and
order relation (7, 7) < (¢/,7") if and only if ¢/ <i < j <.

Warning 1.14. Some authors call this construction the Twisted Diagonal, and call its
opposite the Twisted Arrow Category. Despite the fact that we will in fact in our con-
struction ourselves use the opposite Tw(C)°P, we state the definitions as such to remain
consistent with [Har20] and [Bar13].

Definition 1.15. For a weak CoWaldhausen infinity category (C,CT), we call a map of
simplicial sets f: Tw(A™)°® — C Cartesian if each morphism (7,7) — (¢, j") in Tw(A")
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(that is, whenever i’ <1 < j < j) induces a Cartesian square

f5') —— f(,3)

such that the vertical (dashed) maps belong to C.
Let Fun(Tw(A")°P,C),, be the full subcategory of Fun(Tw(A"™)°?,C) spanned by the
Cartesian maps.

Remark 1.16. As a map out of (the nerve of) a poset is determined by its restriction to
the finite totally ordered subsets, a Cartesian Tw(A™)°® — C corresponds to a “pyramid
of pullbacks” as in the on the n-simplices of Span(C,C"). The higher simplices
of Tw(A™) encode the remaining coherence data.

Definitions 1.17. For a weak CoWaldhausen infinity category (C,CY), let Q,(C,CT) be
the simplicial simplicial set (simplicial set valued presheaf of A) given by the assignment

n+— Fun(Tw(A")°?,C)

5.t
Let Span(C,C") denote the simplicial set obtained by taking the vertices at each level.

Observation 1.18. Span(C,C") can be described as the simplicial set whose n-simplices
are the Cartesian maps Tw(A™)°P — C, and the simplicial operators act by pre-composition.

Theorem 1.19. (Barwick; cf. [Barl3, Proposition 3.4 - Definition 3.8]) Let (C,CY)
be a weak CoWaldhausen infinity category . Then Q.(C,CY) is a complete segal space.
Consequently, the simplicial set Span(C,C") is a quasicategory, the infinity category of
(C,C")-spans.

Observation 1.20. We have (unique) isomorphisms Tw(AY) = A° and
Tw(AY) = N((0,0) = (0,1) « (1,1)) = A;

Consequently, Span(C,C") has objects given by the objects of C and 1-morphisms given by
(C,C")-spans, as desired.

Notation 1.21. For an infinity category C and objects x, y of C, we denote by Mapg (z, )
the fiber

Map¢(z,y) — €/

| |
# r——0——C
It is a Kan-complex as pullbacks of left fibrations are left fibrations, and left fibrations

with target infinity groupoids are Kan fibrations (cf. [Cis19, Proposition 3.5.5]).
There is a canonical equivalence of infinity groupoids (cf. [Cis19, Corollary 5.6.14])

MapZ(z,y) ~ Home(z, y)

Proposition 1.22. Given a sequence C < Ct < C of weak CoWaldhausen structures on an
infinity category C with finite products, the mapping space Span(C,C)(X,Y) is equivalent
to the full subcategory of Span(C,C1)(X,Y) consisting of the spans whose wrong way maps
belong to C.
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Proof. Recall that the quasicategories Span(C,C) and Span(C,C") underlie the complete
segal spaces Q.(C,C) and Q. (C,C"). We have full subcategory inclusions

Q.(C,C) € Q.(C,C") < Fun(Tw(A™)%,C)”

given by taking full subcategories spanned by diagrams with wrong way maps belonging
to C (resp. CT). We will show that the map Span(C,C) ~— Span(C,C") is a monomorphism
of infinity categories.

Lemma 1.23. Let A and B be quasicategories underlying complete segal spaces A, and
By. Then, a morphism A, — B, is a monomorphism of complete segal spaces if and only
if the induced A — B is a monomorphism of infinity categories.

Proof. A morphism A, — B, is a monomorphism if and only if for each level n we have
a Cartesian square of spaces

A, ——= A,
|
A, — B

n

Thus, one essentially has a Cartesian square on passing to vertices and hence a similar
Cartesian square of infinity categories

— =

A—— B

Conversely, if A — B is a monomorphism, we have on exponentiating and taking maximal
subgroupoids for each n a Cartesian square

Fun(A", A)” == Fun(A", A)"

| |

Fun(A", A)™ —— Fun(A", B)~

For a complete segal space X, corresponding to the quasicategory X, we have canonical
identifications X,, ~ Fun(A", X') . Thus the above Cartesian square implies that for each
n?

A == A,
|-
A, — B,

is cartesian, and hence A, — B, is Cartesian, as desired. U

As the inclusions Q,(C,C) < Qn(C,CT)~ of full subcategories are monomorphisms, it
thus follows from the lemma that Span(C,C) — Span(C,C') is a monomorphism. We thus
have a Cartesian square of infinity categories

Span(C,C) = Span(C,(C)
| |

Span(C,C) — Span(C,C")
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This is compatible with exponentiation and fibers. In particular on exponentiating by
A' and taking fibers over (a,b), one gets a Cartesian square of mapping spaces

Span(C,C)(X,Y) == Span(C,C)(X,Y)
Span(C,C)(X,Y) —— Span(C,CT)(X,Y)

So Span(C,C)(X,Y) — Span(C,C")(X,Y) is a monomorphism in spaces. This means that
the map is essentially an inclusion of connected components, that is we have a Cartesian

Span(C,C)(X,Y) »—— Span(C,C"(X,Y)
mSpan(C,C)(X,Y) —— mSpan(C,CH(X,Y)

In our case, the connected components in question are those whose wrong way maps be-
long to C, so Span(C, C")(X,Y) is precisely the claimed full subcategory of Span(C,CT)(X,Y).
O

Corollary 1.24. Given a sequence C < CT < C of weak CoWaldhausen structures on an
infinity category C with finite products, the canonical functor Span(C,C) — Span(C,C")
is a subcategory inclusion (as simplicial sets, even).

In particular, C ~ Span(C,C") can be seen as a subcategory of Span(C,C') for any weak
CoWaldhausen infinity category (C,CT).

Proof. The maps act as the identity on objects, so it suffices to prove that the induced
functor on mapping spaces is a full subcategory inclusion. This is however just the
conclusion of [Proposition 1.22] U

Definition 1.25. Consider a weak CoWaldhausen infinity category (C,C') and a span \
Z
N
X Y

from X to Y whose legs both belong to C'. Then we define its dual, denoted ) to be the

span
N
Y X

Proposition 1.26. Consider a weak CoWaldhausen infinity category (C,CY). Then for a

space K, there is a weak CoWaldhausen structure (CK)T on CX consisting of morphisms
of functors that are object-wise in Ct. Further, we have a canonical identification

Span(C,CMX ~ Span(C¥, (%))

Proof. Let (C,C') be a weak CoWaldhausen infinity category and K an infinity groupoid.
Let (CK )T c (CK )1 be the subset of morphisms of functors K x A! — C such that the
component at each object of K lies in CT.
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Consider a cospan
X
Jiexy”
B——Y

such that the map X — Y belongs to (CK)T. For each object of k, there is a Cartesian

Ak—>XK

ot o

Bk—>YK

in C such that the pullback A, — Bj belongs to C'. These pullbacks assemble into a
Cartesian diagram in C¥

A— X
l;(éK)T l;(cK)T
B——Y

and hence : (CK )T is indeed a weak CoWaldhausen structure on C¥.

Now, the complete segal space Q. (C¥, (CK)T) corresponding to Span(C¥, (CK)T) is such

that Q,(CX, (CK)T) is the full subcategory of Fun(Tw(A™)” CK)™ spanned by the Carte-
sian morphisms. In light of the identification Fun(Tw(A")*,CK) =~ Fun(K, Fun(Tw(A™)™,C)),
it corresponds to the full subcategory of Fun(K, Fun(Tw(A™)* C))” of functors that are
object-wise Cartesian with respect to (C,CT). That is,

Qu(C*, (C%)") = Fun(K. Fun(Tw(A™)”.C). )" = Fun(K.Q.(C.C1)
(the last equality being a consequence of the fact that if K is an infinity groupoid,

Fun(K,X)™ = Fun(K,X")") N

We have canonical equivalences Fun(A”", Span(C,C"))™ ~ Q,.(C,CT) = Fun(TW(A")op,C);T

for each n, so canonical infinity categorical equivalences

Fun(K, Fun(Tw(A™)”,C)..)” = Fun(K, Fun(TW(A")OP,C):T)z ~ Fun(K, Fun(A",Span(C,C"))")"
This can be further rewritten as

Fun(K, Fun(A™, Span(C,C"))”)” = Fun(K, Fun(A™, Span(C,C")))” = Fun(A", Fun(K, Span(C,C")))
As Q. (CK, (CK)T) ~ Fun(A", Span(C¥, (CK)T))Z canonically as well, we have functorial
identifications

Fun(A",Span(C*, (CK)T)): ~ Fun(A", Fun(K, Span(C,C")))

that is
Homc,e, (A™, Span(C¥, (CK)T)) ~ Homcay, (A", Fun(K, Span(C,C')))
functorially in n. It follows that we have indeed an equivalence
Span(C*, (CK)T) ~ Fun(K, Span(C,C'))
as desired. O

Proposition 1.27. Consider a weak CoWaldhausen infinity category (C,C') and ob-
gects X, Y of C, such that C has finite products. There is a canonical identification

of Homgyanc,cty(X,Y) with the full subcategory of (C/(X % Y))_ spanned by maps
7 — X x Y such that the projection to X belongs to C'.
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Notation 1.28. For an infinity category C and an object X, we denote by C/X the fat

slice or alternative slice, the fiber of ev: Fun(A',C) — C at X. It is canonically equivalent
to the so called regular slice C / x as infinity categories over X.

Proof. Denote by (C / (X x Y)); the aforementioned full subcategory, and by (C / X>T

the full subcategory of C/X spanned by the morphisms Z — X that belong to CT. Then,
the canonical equivalence of infinity categories C / (X xY) = C /X *e C /"y restricts

to

C o(C, ) «..C
( /(X X Y))i N ( /X)T Xex "y
The equivalence C /X = C/X restricts to one of (C / X)T onto the similarly defined

(C/X)T. To summarize, we have a canonical equivalence

C

(C/ixxm), = (), %S

Furthermore, the Cartesian squares (in particular fiber sequences) defining the fat slices
assemble into a Cartesian square

C C
( /X>T R Fun(A',C)s x¢ Fun(A*,C)

TN s CxC

(X.Y)

So that (C S (X x Y))i can be identified with the maximal subgroupoid of the fiber

above.
NOW, Span(C,CT)(X, Y) = {(Xv Y)} ><Span(C)ZXSpan(C)2 Fun(Al,Span(C,CT)):. Again7
we can use our canonical equivalence Fun(A', Span(C,C"))” ~ Fun(Tw(AY)",C)°,. As

ot
Tw(A")” = Af = A' ][ A", we have that

Fun(Tw(Al)Op,C)zT = Fun(TW(AI)Op,C)T: = Fun(A',C); x¢= Fun(A',C)”

where Fun(A', C); is the full subcategory of Fun(A!,C)” spanned by arrows in C belonging
to CT. This fits into a diagram

Fun(A',C); x¢~ Fun(A',C)” ——— Fun(A',Span(C,C"))

evi Xevll leVO Xeviy

CxC » » Span(C,C")™ x Span(C,C"))

As C” x C” > Span(C,C")” x Span(C,C")” is monic, we can identify (up to equivalence
of infinity categories) the fibers

(& (x w 1), = (XY} xemc (Fun(AL.0)] xc

1

Fun(A',C)")
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with

{(X Y)} ><Span (c,ct)™ xSpan(C,cH)™ (FUH(AI,C); X Fun(AlaC):) = Span(C,CT)(X, Y)
(The last equivalence being a consequence of both sides being equivalent to the fiber

{(X7 Y)} X Span(C,ct)™ xSpan(C,ct)™ Fun(A17 Span(C, CT))Z) O

Proposition 1.29. Consider a weak CoWaldhausen infinity category (C,CT). A 1-morphism
of Span(C,C") seen as a span in C is invertible if and only if its legs are invertible.

Proof. Let X & Z % Y be a span (from X to Y') with invertible legs. One computes
that if p~! is an inverse to p and ¢~! to ¢, then the composite

YXZX

Y X
Z
is an inverse in Span(C,C"). Thus, every such span is an equivalence in Span(C,C"). It
suffices to show that every equivalence in Span(C,C') is represented by a span with both
legs invertible.
To see this (we follow the proof of [Haul8, Lemma 8.2]), consider a span X < Z %Y

with inverse Y <~ W 5 X. Then there are witnesses to the composition being identity,
i.e. 2-morphisms

ZADN
A

Consider the case for p, the other case of showing that ¢ is invertible is dual. p has a
section «/, it suffices to show that p has a retract as well. Consider the diagram

The outer square is just the identity morphism of p, so Cartesian, hence the inner left
square is as well. Thus there is a witness to the composition
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given by a diagram

Y % W2y
r\_/
1y

So that the witnessed composition u’ o p is an equivalence. Thus, p has a retract as well,
so is an equivalence as desired. Il

Theorem 1.30. Let C' be a weak CoWaldhausen structure on an infinity category C with
finite limits. Then, the Cartesian symmetric monoidal structure on C induces a natural
symmetric monoidal structure on Span(C,C") that acts via cartesian products “levelwise”
(however it is not the cartesian symmetric monoidal structure in general).

Proof. Assertion (iv) of [Haul8 Theorem 1.2] is in fact a generalization of this statement
to (o0, n)-categories of spans. O

2. THE INFINITY CATEGORIES S
2.1. Recollection: n-finite spaces.

Notations 2.1. We denote by S the infinity category of spaces (or infinity groupoids)
defined with respect to some implicit universe.

We also denote for n > —1 the n-sphere S” € S. We have defined S™! to be the initial
object ¢ in order to be consistent with the pushout diagrams

St —— «

[

% s Sn+1
in S for n = —0.

Remark 2.2. While the notion of an n-finite space was introduced much earlier, the
sequence of results generally follows [Har20] here as well. However (particularly in the
proofs) we have made at points as a matter of personal preference minor changes, and
more extensive (albeit longer) explanations.

Definition 2.3. For n > —2, we call a space X € § n-truncated if the diagonal map
X - X" isan equivalence of spaces (weak homotopy equivalence).
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A map X — Y of spaces is n-truncated when each (homotopy) fiber is n-truncated.
A space is n-finite if it is n-truncated and all its homotopy sets are finite. We call a
space m-finite if it is n-finite for some n.

Observation 2.4. A space is (—2)-truncated if and only if it is contractible. A space is
(—1)-truncated precisely when either it is & or contractible.

Further, an application of the long exact sequence of homotopy groups shows that a
space X is n-truncated for n = 0 if and only if for each basepoint x € X and i > n, the
homotopy group (X, ) is zero.

Remark 2.5. With these definitions, [Definitions 1.4] of a faithful functor can be restated
as a functor F: C — D such that for each pair of objects X, X € C, the action on Hom
spaces, Hom¢ (X, Y) — Homp(F X, FY) is (—1)-truncated.

Notation 2.6. For —2 < m < n, let §,, € S denote the full subcategory spanned
by the n-finite spaces, and let S,,,,, © S denote the subcategory of n-finite spaces and
m-truncated maps between them (in the sense of |Construction 1.11|above).

Definition 2.7. For n > —2, denote by k,, a set of weak homotopy equivalence classes of
n-finite spaces. We will say that a category admits (resp. a functor preserves) n-finite or
Kp-(co)limits when it admits (resp. preserves) (co)limits of diagrams indexed by n-finite
spaces, or equivalently elements of x,,.

Observation 2.8. Fiber products of n-finite spaces are n-finite. Consequently, the full
subcategory S, < S has pullbacks (so finite limits, even), and these are computed as
pullbacks in S itself.

Proposition 2.9. Forn > —2, §,, has n-finite colimits, which are preserved and detected
(or reflected) by the subcategory inclusion S, < S.

Proof. As S, is a full subcategory of S, the proposition will follow if we show that S, is
closed under n-finite colimits of n-finite spaces in S.

Consider an arbitrary diagram F: X — §,, with X an n-finite space. Recall that
we have a higher Grothendieck correspondence between functors out of an X valued in
spaces and left fibrations over X (cf. [Cis19, §5.2, in particular Corollary 5.2.8]). The map
F, thought of as a functor X — S classifies a Kan-fibration p: £ —a., X (a corollary
of Joyal’s coherence/lifting theorem is that a left fibration whose target is an infinity
groupoid is a Kan-fibration, cf. [Cis19, Proposition 3.5.5]).

Lemma 2.10. Consider a diagram F: X — S, classifying a Kan-fibration p: E —gan X.
The colimit of F is the homotopy type of the total space E.

Proof. We can think of the colimit functor Fun(X,S) — S as the left Kan extension
m: Fun(X,S) — Fun(+,S) ~ S along the map to the terminal object m: X — .

In terms of left fibrations, this can be computed by forming a diagram (cf. [Cis19, dual
of Proposition 6.1.14]):

cofina

F -

\ B
X —— =

s

3

by factoring the composite £ — X — = into a cofinal/initial map and a left fibration.
Then, mF is the homotopy type of E.

In our case, X —»an * is a Kan-fibration, so no factorization is required and we directly
compute mF as the homotopy type of E := E. O
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In light of the lemma, it suffices to show that the total space E is also n-finite. By
assumption, the fiber of p at an object z has the homotopy type F, = F(x), which is
n-finite. As the total space of a Kan-fibration, with both total space and fiber n-finite, it
is therefore the case that F is also n-finite (by the long exact sequence in homotopy). [

Corollary 2.11. The colimit of a diagram X — S, for an n-finite space X is also given
by the homotopy type of the Kan-fibration it classifies.

Construction 2.12. For a space X € S, there is a canonical cocone (denoted (i,)zex, Or
when X is clear from context simply (i,)) establishing X as the colimit of the constant
X-indexed diagram in S with value the terminal object . We will also write i, for the
cocone map associated to x € X.

Intuitively, this is the inclusion of each point z, i,: » = {x} — X. More formally, the
cocone *y — X is the morphism in Fun(X,S) corresponding to the morphism of left-
fibrations over X from 1x (which classifies the constant functor at =) to m: X x X — X
(which classifies the constant functor with value X) given by

X X, xxX
le
X

(Observe that the fiber over x € X literally does pull out the map * — X with value x)

Proposition 2.13. The cocone (i) of|Construction 2.14 establishes X as the colimit of
the constant X -indexed diagram with value .

Proof. Denoting by 7 again the map X — = and 7*: § = Fun(»,S) — Fun(X,S) the
pullback along 7, we can identify »x = 7*(x) and Yy = 7*(Y) for Y € S. f Y = m(7*())
is the colimit of =y, then the colimit cocone is just the component of the unit map
1 — 7*m of the adjunction m — 7* at 7*(x).

If, fora F: X > S and f: X —» X', fiF is computed by forming the diagram

E cofinal E

pl lq
X=X

and taking the functor X’ — § classifying ¢, then the unit map F — f*fi.F corresponds
to the induced map E — X x xs E of left fibrations over X.
In our case, the diagram is
X X5 X
(O
X ——

and thus we get precisely the map claimed. O

Notation 2.14. Consider a map p: E — X of quasicategories (or simplicial sets, even).
For an object x € X, we define

/e
E/I%X/IL‘

[

FE—r +Xx
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Furthermore, for a functor F: E — C, we denote by F /  the composite
F
E/ r—E>C

Lemma 2.15. (Pasting) Consider a pair of composable functors A > B % C' of infinity
categories, an infinity category X and functors f: A — X, g: B —> X, h: C — X. Con-
sider also o: f — u*q in X2, B: g — v*h in XB, and assume that o exhibits g as a left
Kan-extension of f along u.

Then, [ exhibits h as a left Kan-extension of g along v if and only if the composite

vi f S aurg B, wuth = (vu)*h

exhibits h as a left Kan-extension of f along vu.

Proof. We have by naturality the commutative diagram
a Hom s (g, v*F) b

*

Homyc (h, F) EN Homx s (v*h, v*F) Hom ya (u*g, u*v* F) —— Homya(f, u*v*F)
u:‘*h,v*}' T
\ (u*B)*
/
Hom xa (u*v*h, u*v* F)

Where a being a witness to a left Kan-extension translates to the map b being an
equivalence. Now [ is a witness to a left Kan-extension if and only if a is an equivalence.
Similarly + witnesses a left Kan-extension if and only if ¢ is an equivalence. By the two
out of three property, the lemma follows. O

Proposition 2.16. Consider for n = —2 an infinity category C with n-finite colimits,
and a functor F: S, — C. Then, F preserves n-finite colimits if and only if for every
object X € S,,, the image of the canonical cocone of |Construction 2.12 under F is a
cocone exhibiting FX as the colimit of the constant X indexed diagram with value F .

Proof. We have seen that the canonical cocone of [Construction 2.12|is a colimit cocone,
so if F preserves n-finite colimits it preserves this one. For the converse, consider a
diagram u: X — &, for Y an n-finite space. If u classifies a left fibration p: £ — X
with n-finite total space E, we have in seen that there is a canonical colimit
cocone «: u — FEy in Fun(X,S,). We must show that Fa: Fu — (FE)x is also a
colimit cocone.

As C has n-finite colimits, it has sufficiently many colimits (cf. [Cis19, Proposition
6.4.9]) for the existence of the left Kan-extension functor

y4i
ct 717 CcX

p*

Recall that in such a case, we can compute the left Kan-extension of any F: E — C by
the identification

0 F), = colmF /
Where we defined 7/ /1 as in [Notation 2.14]

Lemma 2.17. Consider a left fibration p: E —_ X and an infinity category C with
sufficiently many colimits for the existence of the left Kan-extension functor p;: C¥ — CX.
Then we have for arbitrary F: X — C a canonical identification

(0 F )z = colim Fig,
forall x e X.
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Remark 2.18. The same is true for every map between spaces, as long as we remember

our convention of taking fibers in the infinity category of spaces, i.e. the “homotopy
fiber”.

Proof. We have the following diagram,

E,——t, . — 5 E

J/ : J/p/zJ J/p

Now, recall (cf. |[Cis19, Definition 4.4.1 and Proposition 4.4.11]) that as the left fibration
p is proper and 1, is final, the map E, — E /1 is final as well. Consequently the

computation of a K /  indexed limit can equivalently be done after pulling back to E,
([Cis19l Proposition 6.4.5]). O

We claim that Fu is the left Kan-extension of (F=)g along p. In light of on
Kan-extensions, this is just the computation (pF), =~ colim(F+)g,, which in light of the
identification FE, ~ u(x) is colim(F#),) ~ F(colim #y(;)) ~ (Fu),. Further, the witness
(F«)g — p*Fu = Fup is given by F being applied to the map =g — up in Fun(E,S,)
given by the morphism of fibrations

E-—2 s ExyE

N~

* *Fa E
(Fr)g — p*(Fu) == p*¢*(FE) = (FE)g
is obtained by applying F to the map

\
7

JI

\
7

Further, the composite

which corresponds to the diagram of left fibrations,

A

E 2y ExyE —3sExE
\lpr/
E

and thus can be identified with (i.) as well. By hypothesis the composite F(i.) is a
representing map of a left Kan-extension, and we have seen that (F#)g — p*(Fu) is as

well. Consequently, by the pasting [Lemma 2.15 F« represents FE as ¢i(Fu), that is the
colimit of Fu. This concludes the proof. O

2.2. The category of spans S;".

Proposition 2.19. For —2 < m < n, (Sp,Snm) is a weak CoWaldhausen infinity cate-
gory .
Proof. First, S, is a wide subcategory of S,, as the equivalences in both are the equiv-

alences in §,,. Precisely, an application of the long exact sequence in homotopy shows
that a 1-morphism in &, is an equivalence if and only if all fibers are contractible. In
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other words, if and only if the 1-morphism lies in §,, _» . That is, we have inclusions of
subcategories (on the nose)

S =8, 2SSum <SS,

so that taking the maximal subgroupoid inclusion yields an actual equality of subcate-
gories S, €S, € S,

Now, as the property of being m-truncated is preserved by equivalences in the arrow
category, it suffices to show that the pullback of m-truncated maps is m-truncated. The
claim thus follows from the fact that we can think of fibers as forming pullbacks in
spaces. As we can compose pullback squares, the fiber of the pullback is a fiber of the
original map. Thus m-truncated maps pull back to m-truncated maps. The proposition

follows. O
Definition 2.20. For —2 < m < n, let S := Span(S,,, Sn.m)-

Remark 2.21. As S,, has finite limits, we may apply [Theorem 1.30 establishing a sym-
metric monoidal structure on S for —2 < m < n, that acts by Cartesian product on
objects and by level-wise product on 1-morphisms.

Observation 2.22. By considering the long exact sequence in homotopy one also observes
that any map between n-finite spaces is necessarily n-truncated. In other words S, , = S,.
Thus, we denote Span(S,,) := S;» = Span(S,,, S,.n) = Span(S,,, S,), the infinity category
of spans of n-finite spaces (with no restriction on the wrong way maps).
We then have for n = —2 a filtration

S, =87cS'c...8"c...8" =Span(S,)

Proposition 2.23. For —2 < m < n, the subcategory inclusion S, = 8] preserves
n-finite colimits.

Proof. By [Proposition 2.16| on n-finite colimit preserving functors out of §,,, it suffices
to show that the inclusion preserves the canonical colimit cocones (i,): *x — Xy of
[Construction 2.12| for every X € §,,.

For this, we require the map in S

Homy (X, =) 2% Hom g, x (X, (<) x) 225 Homg,,x (s, —)

to be an equivalence. It suffices to check that the component at an arbitrary ¥ e S is
invertible.

Lemma 2.24. Consider X € S, and an infinity category C with X -shaped colimits. Then,
for objects a,b € C, we have an identification

Homs (X, Home(a, b)) ~ Homex (ax, bx)

Proof. As we can identify Homg(*, —) = 1s and representable functors are continuous,
we have

Homs (X, Home(a, b)) = Homg(colimx #, Home(a, b)) ~ limx Homg(*, Home(a, b)) ~ limx Home(a, b)
Now as the constant diagram ay has a colimit in C, this is in turn

limx Home(a, b) =~ Home(colimx ax, b) ~ Homex (ax, bx)

Thus, it suffices to prove that the composite

HomS;n(X7 Y)— HomS,TX (xx,Yx) =~ Homg (X, Homszln(*,Y))
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is an equivalence. We have the identifications Homgm (X,Y") ~ (Sn /X % Y) .

{(uv) | w:Sn,m}
of the mapping space onto the full subcategory of maps whose projection to X is m-

truncated, and Homs (X, Homg (#,Y)) ~ Homg (X, (SN/* % Y){:(u,v) | uwsSe m}> similarly.

We can also identify the term (Sn e Y) in the latter with (Sm /S Y) _, as

{(u,v) | u:Sn,m}
a map Z — = being m-truncated is equivalent to Z being m-finite.

Unraveling the identifications, one can understand the action of the composite

(5 x Y){Nw,v)u:sn,m} - Homs( (Sv) )

on objects as sending a (u,v): Z — X x Y to the X-indexed diagram of spans whose
value at an object x € X is the composite span

/\
/\/\

This is in turn just taken to the X-indexed diagram (Z, — Y ),cx in (Sm e Y) . given by

taking the right way maps. The fully coherent map can be described using the straight-
ening construction, which is a functorial way of performing the assignment acting as
(Z > X) > (Zy)sex: X — S.

To be precise, we have an equivalence (cf. |Cis19, Corollary 6.5.9])

xS/ v 5 Fun(X,S)
for every X € §. We construct a chain of equivalences
S/ v « v =Fun(X x V,8) = Fun(X, Fun(Y,S)) ~ Fun (X, S/Y)

Now, Homs(A, B) ~ Fun(A, B)™ = Fun(A, B) as all objects involved are infinity groupoids.
Taking maximal subgroupoids and restricting to the Z — X x Y whose projection to X
is m-truncated (so Z is necessarily n-finite by a long exact sequence argument and the
assumption m < n) we get an equivalence

(Sn/X X Y) {N(u,'u) | w:Sn,m} — Homs ( ( m/Y> )

which computes the aforementioned composite. This concludes the proof. U
Proposition 2.25. Let —2 < m < n. Then the subcategory inclusion S,, € S, is wide.

Proof. We must show that the S, Sg‘: is an equivalence. It acts as identity on objects
so we need only show that it is fully-faithful.

Identifying S,, >~ S, 2, by [Proposition 1.22 on the action of such a functor on spans we
see that for each X,Y € §,, the map defines an equivalence of S,, onto the full subcategory
of Homgn (X,Y) whose objects are the spans with (—2)-truncated wrong way maps (in
other words, equivalences).

Lemma 2.26. Consider an infinity category C. For objects X, Y of C, the mapping space
Home=~(X,Y) of C~ can be identified with the full subcategory of Home(X,Y') spanned by
the equivalences.
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Proof. For any particular X, Y, the map on mapping spaces induced by C~ » C is up to
equivalence the map

Map/s (X,Y) — Mapf(X,Y)

on right mapping spaces (recall from|Notation 1.21|that the right mapping space MapZ(X,Y)
is the fiber of the projection C/Y — C at X).

We have an inclusion ¢ Sy — C /y- The n-morphisms (n-simplices) of ¢ Sy
can be described as (n + 1)-morphisms of C terminating at Y. Under this inclusion,
the n-morphisms that belong to C /'y are precisely those such that each consecutive
map (restriction to A1} ~ Al) is an equivalence. The fiber Map5(X,Y) (and simi-
larly Mapj~ (X,Y)) is computed by taking the (n + 1)-simplices terminating in ¥~ whose
restriction to A%} is the degenerate n-simplex at X. Consequently, the only deter-
mining property for a n-morphism of MapZ(X,Y) to lie in Mapgz (X,Y) is that of the
restriction to A"+ being an equivalence. In other words, Map?: (X,Y) is precisely
the full subcategory of Mapg(X ,Y') spanned by the equivalences. U

The equivalence established immediately before the lemma therefore restricts to an
equivalence of Homg~ (X, Y’) onto the full subcategory of Homsy (X,Y’) consisting of the
spans whose legs are equivalences in S,,. But we have seen in [Proposition 1.29| that these
are precisely the equivalences in §;". Thus, the map induces equivalences on mapping
spaces, so is fully faithful as well. O

Corollary 2.27. If X s a space, then every X-indexed diagram in S)" is equivalent to
(the image of ) an X -indexed diagram in S,,.

Observation 2.28. A consequence of the fact that every diagram in S)" indexed by a
space comes from one in S, (Corollary 2.27), and the fact that the inclusion S, < S
preserves n-finite colimits (Proposition 2.25) is that 8" admits n-finite colimits.

Further, by|Proposition 2.16/ on colimit preserving functors out of S, a functor S — C
preserves n-finite colimits if and only if its restriction to S,, does.

Proposition 2.29. The symmetric monoidal structure on S of [Theorem 1.3() induced
by the Cartesian product on S, commutes with n-finite colimits in each variable.

Proof. The Cartesian monoidal structure on S, is the restriction of the one on &, which
commutes with colimits variable-wise. As §,, has n-finite colimits which are computed in
S (Proposition 2.9)), we see that the Cartesian monoidal structure on §,, preserves n-finite
colimits.

We must check that, say for arbitrary n-finite X, the functor X ® (—): " — S
preserves n-finite colimits. The symmetric monoidal structure on S, extends that on
S,. In particular the restriction of X @ (—): S — S to S, (where X is taken as an
object of §*) is equivalently the composite X ® (—): S, — S, — S (with X now
taken as an object of S,). As both factors are known by [Proposition 2.23| to preserve
n-finite colimits, this restriction commutes with them as well. We have just observed in
[Observation 2.28| that this is sufficient to conclude that the map X ® (—): " — S
commutes with n-finite colimits. U

Notation 2.30. For n > —2, we denote by Cat,, the subcategory of Caty spanned by
the infinity categories with colimits and functors preserving these colimits.

For infinity categories C and D with n-finite colimits, we denote by Fun,, (C,D) the
full subcategory of Fun(C, D) spanned by the functors preserving n-finite colimits.



ON A CHARACTERIZATION OF HIGHER SEMIADDITIVITY 21

Proposition 2.31. (¢f. |[Lur, Corollary 4.8.4.1]) There is a symmetric monoidal struc-
ture Cat,(?n — Fin, on Cat,, such that for every two objects C,D, the tensor C ® D is
characterized by the existence of an n-cocontinuous map C x D — CQ D such that for
any other object &, the restriction

Fun,, (C®D,E) — Fun,, (C x D,E)

is fully faithful and induces an equivalence onto the full subcategory of Fun,, (C x D, &)
that are n-cocontinuous in each variable.

Corollary 2.32. The commutative algebra objects in Cat,, can be identified with sym-
metric monoidal infinity categories admitting n-finite colimits such that the monoidal
product is variable-wise n-cocontinuous.

In particular, by |Proposition 2.2Y the symmetric monoidal infinity category S, is a
commutative algebra object in Catf?n.

3. HIGHER SEMIADDITIVITY

3.1. Idea. To make sense of a notion of higher semiadditivity, we must first make precise
the norm map that we wish to be an equivalence. Consider the first truly “higher” case,
that is that of a diagram F: X — C with C 0-semiadditive and X a 1-finite space.

The data of a map colim F — lim F is intuitively that of a family of morphisms in C,
Fx — Fy that are functorial in the objects x,y of X.

To produce such a map, recall that when C is (0-)semiadditive, each mapping space
Hom¢(a, b) is an E,-monoid. In particular, when the mapping spaces Homy(x,y) of the
indexing category are essentially discrete, we can define such a functorial family of maps
fzy: Fr — Fy by simply “summing” the images of a choice of representatives of the
path components of Homx (z,y). These correspond to a “Norm map”

Nmz: colim F — lim F

and we can try to define C to be 1-semiadditive when each norm map Nmzx is invertible.

The summation operation is induced explicitly in terms of the Norm map for 0-
semiadditivityﬂ For a finite family fi, fa,..., fn: * — y, their summation is defined
as

A L. : : v
r—limzyx - limyxy ~colimzy — vy
where limzx — limyx is the map on colimits induced by fy: zx — yx in Fun(X,C) (the
“post-composition by f” functor), and the equivalence is the inverse of the norm map.
If C is 1-semiadditive, one can try to use the same definition to define an operation

J : Fun(X,Hom¢(x,y)) — Home(z, y)
be

which somehow gives a notion of summing or integrating families of morphisms from x
to y in C indexed by 1-finite spaces.

Remark 3.1. This idea can be expanded upon to describe the notion of an m-commutative
monoid. Intuitively, infinity categories where there is a notion of integrating families of
morphisms with common source and target indexed by m-finite spaces.

One recovers Eq-monoids as the 0-commutative monoid objects. One can show (cf.
[Har20, Section 5.2]) that there is a sense in which that m-semiadditive infinity categories
are those whose mapping spaces are m-commutative monoids.

4That is, the map “induced by the diagonal matrix”
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Moving onward, one can try to repeat this for 2-semiadditivity. That is, for a 1-
semiadditive C, a 2-finite space X and a F: X — C, one might attempt to define a
functorial family of maps f;,: Fx — Fy by integrating the family of maps from Fz to
Fy indexed by the 1-finite space Homy (z,y), that F defines. The rest of this section will
be concerned with a formalization of precisely this approach.

Remark 3.2. The content of this section is primarily due to [HopLurl3][Section 4].

3.2. Ambidexterity. Intuitively, for an n-finite space X and an infinity category C with
n-finite colimits, one says that X is C-ambidextrous if the colimit of any functor X — C
can be canonically identified with its limit. One then recovers the n-semiadditive infinity
categories as those infinity categories C with n-finite colimits such that every n-finite
space is C-ambidextrous.

It will turn out to be convenient to see ambidexterity not as a property of spaces, but
that of maps of spaces. That is, we would like to say that f: X — Y is C-ambidextrous if

the pullback functor Fun(Y,C) EAN Fun(X,C) has a left adjoint f; which can be identified
as the right adjoint as well. In other words, if the left and right Kan-extensions along f
coincide. One of the main results of [HopLurl3] is that the property of C-ambidexterity
is ultimately a condition on the (homotopy)-fibers of f, so in fact we can also identify C
as being n-semiadditive when every morphism between n-finite spaces is C-ambidextrous.

One minor inconvenience is that C may not have “large” enough colimits for the left
Kan extension to be defined for all spaces (indeed, [HopLurl3 Definition 4.4.2] only
defines n-semiadditivity as a property of cocomplete infinity categories). Fortunately, as
any infinity category with n-finite colimits has enough colimits for the left Kan extension

of any f: X — Y between n-finite spaces to exist (“point-wise”), we can say that the

P . Fun(—,C : . .
functor of infinity categories S°P Fun(=0), Cat, takes any morphism to a right adjoint.

This will suffice as [HopLurl3] works with the notion of “Beck-Chevalley” fibrations, of
which the Cartesian fibration corresponding to our functor S¢° — Cat, is an example.

Notation 3.3. We will adhere to the standard notation of denoting the fiber of a map
X — Y at an object y: * - Y as X, := {y} xy X. Further, when C — X is a biCartesian
ﬁbrationE] of quasicategories, we have a family of adjunctions parameterized by morphisms
of X. For a morphism f: X — Y of X, we will denote this adjunction as

fi

C X 1 CY

f*
Definition 3.4. If C — X is a Bicartesian fibration of quasicategories, we define for
every commutative square o in X,

Q

_u

—
Q

o
-]

T>
the Beck-Chevalley transformation BC[o]: pu* — v*q as the adjoint to the map
u* M) U*(]*Q! ~ p*U*CJ!

(where n,: 1¢, — ¢*qi is the unit of the adjunction induced by ¢)

A map that is both a Cartesian and a coCartesian fibration.
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Definition 3.5. If X is an infinity category with pullbacks, we say that a biCartesian
fibration C — X is a Beck-Chevalley fibration when for every Cartesian square o in X,

the [Beck-Chevalley transformation| BC[o] of [Definition 3.4]is invertible.

Example 3.6. The primary example of Beck-Chevalley fibrations that we will be con-
cerned with is that of local systems in a category with n-finite colimits. That is, we will
consider a category C with n-finite colimits, and the Cartesian fibration LocSys(C) — S
classifying the functor Fun(—,C): §°® — Caty. Its restriction/pullback to S, is also co-
Cartesian, classifying the functor that is the same on objects but is the left Kan extension
on morphisms.

Definition 3.7. Given a biCartesian fibration C — X, a morphism X Ly in X, and
a natural transformation 1le, % ff*, we define for objects A, B of Cy and a morphism
f*AS f*Bin Cyx a Sfud,u: A — B in Cy by

AM Al B L B
(where € is the counit of the adjunction induced by f)
This induces a functor du: u — § f udy given by the composition

(f)

Home, (f*A, f*B) L2248 pome (A A, fif* B) 2% Home, (fif*A, B) Y2 Home, (A, B)

We will now introduce for every Beck-Chevalley fibration, a class of ambidextrous
morphisms. We will do this by inductively constructing for every n > —2 a class of
n-ambidextrous morphisms along with, for each n-ambidextrous f, a choice of natural

translation 1c, R fif* exhibiting fi as a right adjoint to f* (which is therefore well
defined up to homotopy). For this it will be convenient to simultaneously define for each
n = —2 a class of “weakly (n + 1)-ambidextrous morphisms”.

Construction 3.8. For a Beck-Chevalley fibration C — X such that the base X has
pullbacks, call the class of equivalences in X' the (—2)-ambidextrous morphisms. For
every equivalence f, let uJIQ be a choice of inverse equivalence to the counit fif* — 1, .
For n > —1, given a notion of (n — 1)-ambidextrous morphisms, we call a morphism

xLy weakly n-ambidextrous if the diagonal X %, X xy X is n-ambidextrous. Using
this as a base case we will define for every n = —2 a notion of n-ambidextrous morphisms
and p"’s as above, and consequently a notion of weakly (n + 1)-ambidextrous in terms of
the diagonals.

Now, assuming that we have defined a notion of n-ambidextrous and the associated
w"’s, we will define for every weakly (n + 1)-ambidextrous morphism f a natural trans-
formation V}H_li f*fi = 1c,. This is done by forming the diagram involving the pullback
square o:

and forming the composition

n %
® BC[o]* * TG T2 %%
[ h ——— mumy ——— m05,05my >~ 1oy o ley >~ ey
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We will say that a morphism f of X" is (n + 1)-ambidextrous if every pullback f’ of f
along a morphism in & is weakly (n + 1)-ambidextrous, and furthermore the associated

1/;},“ is the counit of an adjunction f™* — f/. In this case, we define u}”l to be a choice

of unit for the adjunction f* - f; compatible with 1/}““1.

Remark 3.9. For an (n+ 1)-ambidextrous f: X — Y, the component of 1/}”1 at an object
A € Cx can be identified with Saf ledpg, € Home, (73 A, 7} A) under the equivalence
of mapping spaces

HomCXXYX(W;A, i A) ~ Home, (mm5 A, A) ~ Home, (f*fiA, A)
We also note the following proposition.

Proposition 3.10. (¢f. [HopLurl3] Proposition 4.1.10]) For a Beck-Chevalley fibration
C — X such that the base X has pullbacks,

(1) The classes of n-ambidextrous morphisms and weakly (n + 1)-ambidextrous mor-
phisms are closed under pullbacks.

(2) For =1 < m < n, if f is a weakly m-ambidextrous morphism, it is weakly n-
ambideztrous as well and furthermore, V' and v} are homotopic.

(8) For =2 < m < n, if f is an m-ambidextrous morphism, it is n-ambidextrous as
well and furthermore, p'f' and 'y are homotopic.

Definition 3.11. For a Beck-Chevalley fibration C — X such that the base X has
pullbacks (as in the above construction) we will say that a morphism in X" is (weakly)
ambidextrous if it is (weakly) n-ambidextrous for some n.

Remark 3.12. In light of the nature of (weak) ambidexterity (cf.

tion 3.10)), we can coherently choose our p%’s and v¢’s such that if f is m-ambidextrous
and n = m, p = p} (and similarly for the V’]‘?’S).
Thus, we may just speak of ;1 for f ambidextrous and vy for f weakly ambidextrous.

We record a lemma on the compatibility of the v¢’s and ps’s with Beck-Chevalley
transformations for future use.

Lemma 3.13. (¢f. [HopLurl3, Proposition 4.2.1]) For an infinity category X with pull-
backs, a Beck-Chevalley fibration C — X, and a pullback square o in X

x Ly

le ’ o lpy

(1) If f is weakly ambidextrous, so is f' and vpp’: f* flpk — p% is (homotopic to)
the composition

f*BCo] % ~ 309%
P = [ fr S o [ h =5 b

(2) If f is ambidextrous, then so is f' and we also have that pypus: py — py fif* is
the composite

BC[o]f*
f———py fif”

E3
Ky Dy ~

E3 J ! ol k ] %

py — fif by — fipk
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3.3. A criterion for ambidexterity. We will now restrict to our case of interest, the
Beck-Chevalley fibration LocSys(C) — S, for an infinity category C with n-finite colimits.

Here, LocSys(C)x = Fun(X,C) and the adjunction induced by a morphism X Ly s
precisely the left Kan extension - pullback adjunction. Thus, our notion of ambidextrous
morphisms does indeed realize morphisms for whom the left Kan extension is also a right
Kan extension. For such a C, we will call the (weakly) ambidextrous morphisms the
(weakly) C-ambidextrous morphisms.

Definition 3.14. For an infinity category C with n-finite colimits, call an n-finite space
X (weakly) C-ambidextrous if the map to the terminal object X — » in S, is (weakly)
C-ambidextrous.

Remark 3.15. As the colimit (resp. limit) functor Fun(X,C) — C can be identified with
left (resp. right) Kan extension along the map from X to the terminal object, the colimit
of a C-valued functor out of a C-ambidextrous space can be canonically identified as its
limit.

The main result of [HopLurl3] provides a characterization of C-ambidextrous mor-
phisms. We state a version of the result adapted for the case of an infinity category with
n-finite colimits. While the proof is essentially the same, we present it just to be clear
about the modifications to be made.

Proposition 3.16. (¢f. [HopLurl3, Proposition 4.3.5]) Consider an infinity category C
with n-finite colimits and X — 'Y a Kan fibration between n-finite spaces. Then f is C-
ambidextrous (resp. weakly ambidextrous) if and only if each fiber X, is C-ambidextrous
(resp. weakly ambidextrous). In other words, for an infinity category C with n-finite col-

imits and a morphism X Ly in Sn, [ is C-ambidextrous if and only if each (homotopy)
fiber is C-ambidextrous.

Proof. The “only if” implication is a direct consequence of (weak) ambidexterity being sta-
ble under pullbacks (Proposition 3.10)). For the converse, as every morphism between n-
finite spaces is n-truncated, we may proceed by induction on m := min {k | f is k — truncated}.
The (—2)-truncated maps are the equivalences, and thus we get the base case m = —2
as equivalences are always (weakly) ambidextrous. Now for m > —2, assume that the
claims hold for all m/-truncated morphisms with m’ < m. First assume that each X, is
weakly ambidextrous, we will show the m-truncated f is weakly ambidextrous.
For this, note that the diagonal d;: X — X xy X is (m — 1)-truncated, and further
its fibers, say

X(ap) X
l J llsj
(a,b)
r —— X X Y X

for objects a,b of X with common image y in Y can be seen as the fiber

X(a,b) EEE— Xy

| o b
(a,b)

P — X, x X,

so that X(, ) — * is the pullback of an ambidextrous morphism and hence ambidextrous.
Thus by the (m — 1)-truncated case applied to o, f is weakly ambidextrous.

To complete the induction, we must also show that if the fibers X, are in fact ambidex-
trous, then f is as well. Now, as the fibers of any pullback of f are fibers of f, it suffices
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to show that vp: f*fi — lex is a counit of an adjunction f* — fi (as we may replace f
by any of its pullbacks).
What this means is that for any F € Cy, G € Cx, the functorial map

I 1o

Homey (F, fiG) “22% Homex (f*F, f* 1G) 225 Homex (F*F, G)

is an equivalence. Note that this map is compatible with the formation of colimits in the
F € CY variable.

Lemma 3.17. Let C be an infinity category with n-finite colimits and X € S,. Then,
Fun(X,C) is generated under X -indezed (so in particular n-finite) colimits of functors of
the form v,C, where v is the inclusion of an object {x} — X and C € C.

Proof. (of the lemma) Consider the maps X LXx XX composing to the identity.
Then we have w0 ~ 1lex, and furthermore under Fun(X x X,C) ~ Fun(X, Fun(X,C))
the functor 7y, corresponds to colim: Fun(X,CX) — C¥.

Thus every object F' € C¥ is a colimit of some X — C¥X; in fact it is the colimit of
the object A: X — CX corresponding to 8, F. The value of A at an object x can be
computed as (¢, x 1x)*0,F: X — C, where ¢,: {x} — X is the inclusion of the point .
There is a Cartesian square with the Beck-Chevalley property,

fay D) oy o x

ngl lnz x1x

XT>X><X

SO we can compute

(L:c X 1X)*5'~F = Lx!L:;'F = L:c!(]:z)
Consequently, every such F = colimgex t,1(F;) can be written as the colimit of an X-
indexed diagram of objects of the form ¢, C'. O

Coming back to the proof of the main result, recall that we had noted right before the
lemma that the map in question was compatible with colimits in the CY variable. The
objects in question are precisely those generated by colimits as in [Lemma 3.17 It thus
suffices to show that the map is an equivalence when F is an object of the form C, for
t: {y} — Y the inclusion of an object and C € C.

Consider the following Cartesian square o

X, —— X

!

{y}p — Y
There is a diagram

fLICflg

Homey (uC, iG) ——— Homex (f*uC, f*fG) —— s Homex (f*uC, G)

| | |

Home(C, t* £iG )(f*)m ngomny (f;C, fye* fiG) —— Homex, (f;C,1;G)

| e

Homc(C' fy,L g? — Hochy (f O f fyl *g)

)C fylL g
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with the right square deriving from [Lemma 3.13] which asserts the compatibility of the
vs’s with Beck-Chevalley transformations (the equalities with the third row are in light
of the Beck-Chevalley isomorphisms). In particular, the right vertical map is invertible
by the Beck-Chevalley property (and the left vertical one is also invertible as it is just an
adjunction isomorphism).

Thus it suffices to show that the bottom path is invertible. But the composition is the
adjunction morphism induced by vy, for C' and ¢;G. Invertibility thus follows from our
assumption that each X, is C-ambidextrous, as this means that vy, is indeed the counit
of an adjunction f; — f,,, completing the proof. 0

3.4. Semiadditivity.

Definition 3.18. For n > —2, we define an infinity category C with n-finite colimits
to be n-semiadditive when every n-finite space is C-ambidextrous (with respect to the
Beck-Chevalley fibration LocSys(C) — S,,).

Remark 3.19. In light of [Proposition 3.16| (a corollary of the main result of Hopkins and
Lurie), an infinity category C with n-finite colimits is n-semiadditive if and only if every
morphism in §,, is C-ambidextrous.

Definition 3.20. Consider an n-semiadditive infinity category C, for every pair of objects

A, B of C and n-finite space X we have identifying
Homgs (X, Hom¢ (A, B)) ~ Homex (Ax, Bx)

Given this and the integral map

dpy = JZ Homex (p*A, p*B) — Home (4, B)
p

of Definition 3.7, we have a map
dux = f : Homs (X, Hom¢ (A, B)) ~ Homex (Ax, Bx) — Hom¢(A, B)
X

Examples 3.21. As the (—2)-finite spaces are precisely the contractible ones, every
infinity category is (—2)-semiadditive, as promised.

As for (—1)-semiadditivity, the diagonal of ¢ is invertible so ¢ is always weakly am-
bidextrous. The pullback of ¢ — = along X — = is simply the (essentially) unique
1: & — X. Further, the corresponding adjunction #; - ¢* is such that under the identifi-
cation Fun((J,C) ~ = the right adjoint ¢* is just the map to the terminal object, and the
left adjoint iy: * — C* picks out the initial object (constant functor at the initial object
of C).

The corresponding v;: i*iy — 1, is thus identifiable with the identity i*4; = 1, and this
being a counit is just saying that the functorial map (in F: X — C)

HOch (JT", @) = Homcx(]—",z’g*) g Hom*(z*}",z*z'*) = %

is invertible, or in other words that the initial object of C¥ is also final. Thus, we do
indeed have that the (—1)-semiadditive infinity categories are the pointed ones.

Remark 3.22. More generally, a consequence of [Proposition 3.16| (the main result of
[HopLur13)) is that if C is n-semiadditive, every (n+1)-finite space is weakly C-ambidextrous.

Remark 3.23. Now let C be pointed (i.e. (—1)-semiadditive), we compute for every pair
of objects A, B € C the associated du: * ~ Homg(&, Home(A, B)) — Hom¢ (A, B). This
is precisely the zero map, as one of the objects in the composable sequence defining it is
the zero object.
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Computation 3.24. Consider a pointed infinity category C, and a finite set X, thought
of as a discrete space (equivalently, a O-finite space). Denoting the map to the point
p: X — #, we wish to compute vx := v,: p*p — 1lc. This can be done as the infinity
category C is (—1)-semiadditive, as then the O-finite X is weakly C-ambidextrous.

For this we will first compute ps: 1¢ — 0,0*, where 6: X — X x X is the diagonal of X

(equivalently p). By our formula for computing left Kan extensions (Lemma 2.17)), for a
F: XxX — C, the value at a (z,y) € X x X of 6,0*F can be computed as colimy,, =~ 6*F.

But we have
* Tr = y
Xay) = {

g x#y
so that
Fe =1y
010  F) ) =
(00" F) ) {O T #Y
with

lr,, 2=y
F:F —§0*F) ~ §
(1 ! ) {O T#Y

Given pg, the transformation vx can be written as the composite

*
TS TS
pip = Ty —— 06Ty ~ 1¢

with the first equivalence being induced by the Beck-Chevalley transformation associated
to the Cartesian square
XxX "5 X
ml : lp
X —r 5.
Now, we aim to compute for a functor F: X — C and an object z € X, the map

(vxF), : (p*mF), = colimx F — F,. For this we observe that for G: X x X — C, m,G
can be computed as

(Wl!g)m = CO“m{x}xX (g|{x}><X)
and we need simply apply that to (for y an arbitrary object of X)

® ('%ﬂ-;‘]:)(ﬂIC y) * % 1.7: r=1Y
(M Py = > (00" m )y = O0F )y =V " y
Thus,

(“““”;}—)z

(vxF), : colimx F = (p*pF), ~ (myn3F), (mdF), ~ Fy

is precisely the map whose restriction to the component corresponding to the object
x € X is the identity, and whose restriction to every other component is the zero map.
The adjunction map

Hom, (A, H fz> pA”””—EXFT> Homex (AX, (H }"x> ) % Homex (Ax, F)
X

reX reX

being an equivalence for arbitrary ]ﬂ is thus equivalent to vxF exhibiting | [, Fu as
the product/limit of F.

5Tn other words, X being C-ambidextrous.
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Observation 3.25. The last conclusion of[Computation 3.24] can be restated as, X being
C-ambidextrous if and only if for arbitrary F: X — C, F having a product [ [ F in C
and the canonical map [ [x F — [[x F given by the diagonal matriz being invertible, as
promised.

Proposition 3.26. (¢f. [HopLurl3, Proposition 4.4.9]) Let C be a pointed infinity cat-
egory with finite coproducts (equivalently, 0-finite colimits). Then C is 0-semiadditive if
and only if for every pair of objects A, B, there is a product A x B in C and the canonical
map A[[ B — A x B given by the diagonal matrix is mvertibleﬂ.

Proof. The statement about products is just the two point space being ambidextrous, so
it follows immediately from 0-semiadditivity. For the converse, assume that every such
diagonal matrix map is invertible. The O-finite spaces can be equivalently identified with
finite discrete spaces or finite sets. In other words, it suffices to show that for every finite
set X, the map p: X — = is C-ambidextrous.

We know that pointed infinity categories are (—1)-semiadditive, so the empty set and
the one element set are C-ambidextrous. It in fact is sufficient to show that the two
element set X = {0, 1} is C-ambidextrous, as we can then show it for any other finite set
Y by induction on its cardinality (cf. the proof of [HopLurl3| Proposition 4.4.9]).

To be precise, for Y with more than two points, pick one of them, say y and define
Y — X sending y to 0 and all other points to 1. Then, this map has fibers given
by sets of strictly smaller cardinality, which we can assume to be C-ambidextrous by
induction. Thus, by [Proposition 3.16| (the main result of [HopLurl3]), the map ¥ — X
is also C-ambidextrous. Consequently, if we can show that X is C-ambidextrous, we
may conclude that Y is as well. But the hypothesis lets us conclude that the two point
space is indeed ambidextrous in light of the characterization of 0-ambidextrous sets of

[Observation 3.25| O

Remark 3.27. Thus, 0-semiadditive infinity categories are indeed the classical semiaddi-
tive infinity categories as promised.
Furthermore, the induced transformation

f : Homs(X, Hom¢(A, B)) — Hom¢(A, B)
X

can be seen to be just addition (in the sense of the Eq-monoid operation on Hom¢ (A, B)),
so our so called “summation/integration” operation does indeed deserve the name in the
0-semiadditive case (when X is contractible, this acts as identity and when X is empty,
it picks out the zero map). For general n, the | operation continues to act in such a
way, “integrating” families of morphisms A — B in an n-semiadditive infinity category
indexed by an n-finite space.

To be precise, one can (cf. [Har20, Section 5.2]) introduce a notion of n-commutative
monoids, which generalize E,-monoids and are informally objects in which one can “in-
tegrate” over n-finite spaces in a coherent way. One shows that the Hom-spaces of
n-semiadditive infinity categories are in fact n-commutative monoids, and the operation
itself can be computed precisely by the {-construction so defined.

Observation 3.28. The opposite of an n-semiadditive infinity category is also n-semiadditive.

Examples 3.29. We conclude by listing a few notable examples of semiadditivity.
e Stable infinity categories and nerves of semiadditive 1-categories are both 0-
semiadditive.

"In other words, the canonical maps A||B — A and A||B — B given by the identity in one leg
and zero in the other exhibit A[[ B as the product of A and B.
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o (cf. [Har2(, Corollary 3.20]) For all integers —2 < m < n the infinity category
8™ is m-semiadditive (also presented later on in [Example 4.18)).

e (cf. [Har20l, Proposition 5.26]) For any n > —2, the category Cat,,, is n-semiadditive
(cf. [Proposition 5.12| for a slightly different proof than that in [Har20]).

e The category of E,-monoid objects in any infinity category with finite products
is O-semiadditive. (cf. [Har20), Section 5.2}, also with a generalization)

e (cf. [HopLurl3, Theorem 5.2.1]) For any n € N, the category of K (n)-local spectra
is m-semiadditive for any m (where K (n) denotes the Morava K-theory spectrum
at height n).

o (cf. [CarSchYanl§, Theorem 5.3.9]) For any n € N and integer prime p, the infinity
category of T'(n)-local spectra is m-semiadditive for every m (where T'(n) is the
telescope of a finite p-local type n spectrum).

4. A CRITERION FOR SEMIADDITIVITY

We now proceed to establish an alternative definition for n-semiadditivity, following
[Har20]. To be precise, we wish to establish the following theorem.

Theorem 4.1. (¢f. [Har20, Corollary 3.19 and the discussion at the start of the first
paragraph of section 5.1]) Let C be an infinity category with n-finite colimits. Then C is
n-semiadditive if and only if it admits an action of S compatible with n-finite colimits
(that is, an action such that the action functor 8} xC — C commutes with n-finite colimits

mn each mr’iableﬁ).

Remark 4.2. In fact, when an infinity category with n-finite colimits is n-semiadditive,
the S’-action so described is essentially unique (cf. [Har20, Corollary 5.3|, which is
|Corollary 5.10| below).

We will prove the of definitions in two steps. In this section we will prove
that an infinity category with n-finite colimits and such an action of §;' is indeed n-
semiadditive. This will be done by identifying the v¢’s and ps5’s of Hopkins and Lurie in
[HopLur13] with alternative natural transformations defined in terms of the Sl-action.
We will then show that the v’s defined in terms of the S)'-action do indeed serve as
counits for our desired adjunctions (cf. [Har20, Section 3]).

The converse direction is an immediate consequence of the universal property of S
introduced by Harpaz in [Har20), Section 4] (where in fact, a universal property of S}* for
general —2 < m < n is introduced).

We will show that an infinity category with n-finite colimits admitting an action of S}
compatible with these colimits is n-semiadditive by induction on n > —2. The n = -2
case is immediate as all infinity categories are (—2)-semiadditive.

So it remains to establish the inductive step for n > —1. For this, it is standard to
consider an (n— 1)-semiadditive infinity category with n-finite colimits and such an action
of &', and then prove that it must be n-semiadditive. We will in fact establish, given
a slightly weaker hypothesis, a more general (yet verbose) condition for such an infinity
category to be n-semiadditive. Therefore, it is more convenient to assume instead the
“standing hypothesis”.

4.1. The Standing Hypothesis.

Hypothesis 4.3. We consider an (n — 1)-semiadditive infinity category C with n-finite
colimits, equipped with an action of S"~! compatible with n-finite colimits.

8Alternatively, that C is an S?-module in Cat,,
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We will say that such an infinity category C satisfies the standing hypothesis (with
respect to this n).

Remark 4.4. Note that an action of S on an infinity category with n-finite colimits that
is compatible with n-finite colimits restricts (by |Observation 2.28)) to an action of S"!
that is also compatible with n-finite colimits. In particular, the standing hypothesis of
[Hypothesis 4.3|is indeed weaker than the inductive one.

As a consequence of [Proposition 3.16| (the main result of Hopkins and Lurie), when C
satisfies the standing [hypothesis| every X € §,, is weakly C-ambidextrous. In particular,
the inductive construction produces a vx for every X.

Similarly, every (n — 1)-truncated map f in S, is C-ambidextrous, so we have an
associated g as well.

Notation 4.5. For the sake of convenience, we will denote the v’s and u’s introduced
by this construction with indices, for instance v* or u* to indicate that these derive from
an inductive construction, and to distinguish them from the morphisms v and p we will
later define in terms of the action of spans.

Notation 4.6. Given an infinity category C satisfying the standing hypothesis (Hypoth-
esis 4.3), given an n-finite space X we will denote by [X]: C — C the n-finite colimit
preserving action of X.

Observation 4.7. Recall that for any n-finite space X, we have as in|Construction 2.12
a canonical cocone exhibiting X as the colimit of the X -indexed constant diagram at the
point. Denoting by p: X — = the map to the point, this statement is an equivalence
X =~ pp*«, in terms of the adjunction

D1
SX I > S
p*
induced by p. The action functor being n-cocontinuous in the 8" '-variable means that
there is an induced identification

[X] = [prex] = pi [#x] = pp* [+] = pip”
in terms of the adjunction
P
X —
C L-C

p*

also induced by p (the last equivalence a consequence of ] ~ 1¢).

Remark 4.8. In light of the [Observation 4.7 on the action of a space, our notation can be
identified with that of [HopLurl3, Notation 5.1.9]

4.2. Trace Forms. The criterion we ultimately establish will build upon a formulation
in terms of “Trace Forms”, as in [HopLurl3| Section 5.1].

Notation 4.9. (cf. [HopLurl3, Notation 5.1.7]) For a Beck-Chevalley fibration (recall
Definition 3.5) X % C and a X 5V in C, let [ X /Y] denote the composite

ey Lo ey
Definition 4.10. (cf. [HopLurl3, Notation 5.1.7]) For a[Beck-Chevalley|fibration X = C

and a weakly ambidextrous X I, ¥ in C, define a map TrFmy: [X/Y] o [X/Y] = 1ey,
called the Trace Form, as the composite

IX/YTo [X/V] = fftfuf* 205 ppe 2,
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where € is the counit of the adjunction fi 4 f*.
For a weakly ambidextrous object X of C, we will define TrFmx := TrFm,, where

X &« is the map to the terminal object.

Proposition 4.11. (¢f. [HopLurl3, Proposition 5.1.8]) For X 5 C a|Beck-Chevalley

fibration and a weakly ambidextrous X Ly in C, the following are equivalent:

) u’Jf 15 a counit of an adjunction f* — fi, that is, f is ambidextrous.
o The Trace Form TrFmy exhibits | X /Y] as self dual in Fun(Cy,Cy).

Proof. Assume first that f is ambidextrous. Then we have a unit py := //} compatible
with vy := v} in terms of which we can define a map coev: l¢, — [X /YT by

k

coev: l¢, 5, hre ELLIZAR A fff=1X/Y]o[X/Y]

where 7y is a unit for fi 4 f* compatible with €;. We claim that TrFmy, coev are an
evaluation-coevaluation pair. To see this, we observe that we have commuting diagrams

f*Vf*f!f*f! . o T hf*h "
"y vy ! nr ! Wy
f*h \ f*h frh \ f*h
N % N ny
ley Ley
which fit into diagrams
Ny f/f'*f!f*f!f*f! s
S fung £ w5
o T hf*h \f*fzf*fx o
1 erh
f*h f*h fEh
- TR e
1 f® fing wif*fi
" VAV AN \f*f!f*fz o

which precisely compute the composites which we we want to identify with the identity.
In both cases, the bottom four maps are such that the first two and last two are both
derived from triangle maps corresponding to the adjunctions (p,vy) and (ns,e7). Thus
the identity is ultimately a composite of both, as desired.

For the converse, assume that TrFmy is a self-duality evaluation map and let coev be
a coevaluation compatible with it. We must show that vy := V’; is a counit, that is, that

there is a unit map py such that iy and vy satisfy the triangle identities.
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It in fact suffices to find two morphisms p1, pto: 1e,, — fif* such that each satisfies one
of the triangle identities, that is, such that

N h J*hf*

1 fi fivs FFpe v f*
fi / \ N I / \ [

This is because given such 1, pio one sees that p: le, — fif* defined as

pi de 25 it 2
can be seen to satisfy both the triangle identities with respect to I/fﬂ

It remains to construct such a py and po. We must show that (fivy) o (uifi) ~ 1y,
and (vyf*) o (f*u2) = 1p«. For this it suffices to show that the respective adjoints under
fi 4 f* are homotopicF_U(

For instance, in the case of jo, we must show that e so( fivyf*)o(fif*u2) is homotopic to
ef. This composite is simply TrFmy o ([ X /Y] p2). In light of the evaluation-coevaluation

identities, one may consider defining iy := 1o, =% [X/Y]? XVl | X/Y]. This does
indeed work, in light of the diagram
[X/Y] [X /Y ]coev [X/Y]3 [X/Y] e [X/Y]2
\ lTrme [X/Y] lTrme
[(X/Y] ——— 1oy

For the other case, that of j; one might define dually

coev er[X/Y]

= Loy =5 (XY T (X /Y]

This will also work, but the argument proceeds slightly differently. We do however have
the dual diagram

ef[X/Y]?

Lx/y] = vy [X/YT
\ l[X/Y]Trme lTrme
[(X/Y] ———— 1oy

from which we see that the composite 7 o (fivgf*) o (p fif*) is homotopic to ey.

Lemma 4.12. Consider an adjunction

f
C_1°D
g

and let n,e denote a compatible unit and counit for it. Then there is an equivalence
*
Homeune,p) (F, F) 7, Homeun(p.p) (FG, FG) = Homgunp.m) (FG, 1p)

9n fact, 1 is homotopic to both u; and pe.

10This is encapsulated by the fact that the adjunction fi < f* induces an adjunction on passing to
homotopy categories.
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Proof. (of the lemma) This is an instance of the induced adjunction between the precom-
position functors. More precisely, for an infinity category £, we have an adjunction

e i - &P
_F*
whose unit and counit can be described in terms of n and € as n*: 1gc — (GF)* = F*G*

and e*: G*F* = (FG)" — 1¢o.
Instancing this at £ := D, we have an adjunction equivalence functorial in X, Y

Homgun(e,py (X, F* Y) — HomFunDD (G*X,G*FY )—)> Hompun(p,p) (G* X, Y)
which is such that at X := F,Y := 1p, we have precisely the desired equivalence. Il

Instancing the lemma with F := f1,G := f* 1 := ny,e := € we see that we have an
equivalence
(r)* ) (1),
HomFun(CX,Cy) (f!a f') E— HomFun(Cy,Cy) (f'f 7f!f ) —5 HomFun (Cy,Cy) (f'f 1Cy)

Under which (fivy) o (11 fi) and the identity correspond to ef o (fivyf*) o (1 fif*) and
ey respectively. As in the other case, passing to homotopy categories establishes that
(fivg) o (11 fi1) is homotopic to the identity, completing the proof. O

Corollary 4.13. For an (n — 1)-semiadditive infinity category C with n-finite colimits, C
s n-semiadditive if and only if for every n-finite space X, the Trace Form TrFmx exhibits
[X/#] as self dual in Fun(C,C).

Definition 4.14. For an n-finite space X, let Trx be the morphism of 8"~! given by the

/\

X x X

4.3. Statement of the criterion. We can now state precisely the actual criterion we
will devote most of this section to proving.

Proposition 4.15. (¢f. [Har20), Propostion 3.17]) Let C be an infinity category satisfying
the standing hypothesis (Hypothesis 4.3). Then, C is n-semiadditive if and only if for
every n-finite space X, the transformation

[X]o[X] = [X x x] 1, 1,
exhibits [ X] as self dual in Fun(C,C).

The connection between this criterion and an S;-action is due to the fact that such an

action lets us explicitly write out a coevaluation compatible with the transformation just
described.

Lemma 4.16. Let X be an n-finite space, then the trace map X x X T, « and z'ts

* TrX X x X in S are an evaluation-coevaluation pair exhibiting X as self dual.

Proof. What this means is to check that the pairs of composable maps in S
X 2T, X X ox x e,y

Tryxx1 1xxTr
X X5 X x X x X 225X
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have 1x as a composition.
We have the diagrams of (n-finite) spaces (where 0 is the diagonal of X and p is the
map to the point)

PRy

X xX X xX
U
X X xXxX X
which witness precisely compositions as such. O

Corollary 4.17. Consider an infinity category C with n-finite colimits, and an action of
S such that the action functor preserves n-finite colimits variable-wise. C is necessarily
n-semiadditive.

Proof. As in the discussion at the start of this section, we proceed by induction on
n, the base case n = —2 being tautological. As the restriction of the action to S"~}
preserves (n— 1)-finite colimits variable-wise, we may inductively assume that C is (n—1)-
semiadditive. In particular, it satisfies the standing
Thus it suffices to show that the trace form
[X] o [X] > [X % X] 25 1
exhibits [X] as self dual, that is, it is an evaluation map. But in §”, X x X T%, & and

its dual span = T, X x X are an evaluation-coevaluation pair. This remains true on
passing to their actions, proving self-duality as required. U

Example 4.18. For —2 < m < n, the infinity category S, is m-semiadditive. This is
an immediate consequence of the above corollary, as we have seen that S)" has m-finite
colimits (n-finite, even) and that the monoidal product on S restricts to an action of
S on S, that preserves m-finite colimits variable-wise.

The strategy to prove [Proposition 4.15|is to identify the described transformation with
the TrFmx of Hopkins and Lurie. The proof will ultimately involve finding equivalent
expressions of the various factors, and will be done in several steps.

Proposition 4.19. Consider an infinity category C satisfying the standing hypothesis
(nypothesis 4.3|)and an n-finite space X. Denote by X 2 = the map to the terminal
object (in S, ), then the induced

[p]

pp* = [X] =[] ~ 1c
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is a counit of the adjunction py - p*.

Proof. To see that [p] is a counit to the (a-priori known to exist) adjunction p; - p*, it

suffices to show that its adjoint [p]|: p* — p* is invertible. This is computed by applying
the functor p* and precomposing by its unit.

The adjunction p; -4 p* in question is an adjunction colimx - (—)x, and the unit is
the (—) — (colimx —), given by the colimit cocone maps. We have already calculated
this to be the transformation [i,], ., whose component at an x € X is the action of the
canonical colimit cocone map iy of [Construction 2.12|

Thus, the adjoint [p] is such that its evaluation at any x € X is given by the composition
[p] o |iz] >~ [poiz] = 11, (as i, is a section of p). In particular, it is object-wise an
equivalence in Fun(C,C¥) = Fun(X,Fun(C,C)), and hence an equivalence as desired. [J

Proposition 4.20. Consider an infinity category C satisfying the standing hypothesis
(Hypothesis 4.3), and an (n — 1)-finite space X. Denoting by p: X — = the map to the
point, the induced

1o = [+] s [X] =~ pip*

is a unit for an adjunction p* - p, , that is, exhibits X as C-ambidextrous.

Proof. As C is (n — 1)-semiadditive, the inductive construction of [HopLurl3] constructs
a v% that is a counit of an adjunction p* - p;. Let u% be a unit compatible with it, we
will show that p% ~ [p].

IProposition 4.11| (that is, [HopLurl3, Proposition 5.1.8]), which characterizes ambidex-
terity in terms of the trace form asserts that

”/k: *
TrFmy: [X] o [X] = pp*pp* 22 pp* 55 1,

exhibits [ X] as self dual in Fun(C,C). Here, ex is a counit to the adjunction p, 4 p*. We
know from [Proposition 4.19| that [p] is such a counit, so we may as well set ex = [X].

To identify the maps [p] and p% in the monoidal category Fun(C,C), it suffices to
identify their duals. The dual of p is just p, so the dual of [p] is [p] as taking the action
is compatible with duals. The dual of i is computed as

[X]uk [

[X] = [X] ol X]o [X] 55 1

which expands as

¥ k Wk *
pp* S pprppt B pp* 1, lc

The first two maps in the sequence are just p applied to the two composable maps
in one of the triangle identities for p* < pi. Thus, [p] is a composition of the entire
sequence, that is, [p] is a dual of p% as well. As p% and [p], have the same duals, they
are equivalent, and consequently [p] is a unit for an adjunction as desired. U

So far we have been concerned with the action of objects, that is the endomorphisms
pp* of C induced by a p: X — ». We now extend this to a description of fif* for more
general f: X —» Y.

We expect this to be a functor C¥ — CY. One might expect this to derive from an
action on C¥. This can be made precise using the straightening equivalence.

Definition 4.21. Recall that the straightening equivalence (cf. [Cis19, Corollary 6.5.9])
Stx: S/ x5 Fun(X,S)

restricts to a

Stx: Sn/ x — Fun(X,S,)
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for any n-finite space XH (by a Serre long exact sequence argument).
Further, we denote the composite induced by S,, — 8" ! as

Sty: S/ x — Fun(X,S,) — Fun(X, 8271 = (si1)”
(or simply St when X is clear from context)

Notation 4.22. For a map f: X — Y in §,, we denote by St;: Y — §, its straight-
ening, and by Sty: Y — Sit the further composite with the inclusion into Sm~1 which
computes the image of f under St.

Construction 4.23. For an infinity category C satisfying the standing hypothesis (Hy-|
pothesis 4.3)), the action of S"~! on C induces for every n-finite space Y an action of

(Sr1) " on CY point-wise. As colimits in functor categories are computed object-wise,
this action also preserves n-finite colimits in each variable.

For an f: X — Y, the action of STf on an Y 5 C can be explicitly computed as

([STf] ‘F)y - [STJ‘(?J)] (Fy) = [X,] (Fy)

Proposition 4.24. For an infinity category C satisfying the standing hypothesis (Hypoth-
, and a f: X =Y of n-finite spaces, we have an identification

[Sty] ~ fif*:CY —>C”

Proof. We describe a map fif* — [Sff] that will be shown to be an equivalence. Form
the base change

Xxy X L5 X

gl ! lf
XﬁY

and let 6: X — X xy X be the diagonal of f. This is a morphism in the slice Sn/X

(where X xy X is given structure map g¢), and thus defines a morphism »y ~ Sty 2, Sty.
As straightening is compatible with base change, we can identify St, ~ f*Sty. More
explicitly, we have a(n essentially) commutative diagram

Sn /v — Fun(Y,S,)

"l |-

Sn/X — Fun(X,S,)

so that the two images of f are identified.
Consequently, one gets a map 1ex 1, [Sty| ~ [f*St;] in Fun(C¥,C¥). Precomposing
with f* provides a f* e, [f*St¢] f* in Fun(CY,CX). This last term is itself just

M And further in fact, to a map on the m-truncated maps Sn,m/X — Fun(X,S)
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I [S?f], in light of the diagram
[Sts]

R T A

STf X ICY
| ool

F¥Styx1
cx freX Sl X ® cxX

n
[7vs57]

The map f* LA f* [STf] is adjoint to a fif* — [STf], which we will show is an
equivalence.

This can be done point-wise in F € C¥. We must show that f*F Bz, f* I:STf] F
exhibits [S?f] 1Y — C as the left Kan-extension of f*F = Fof: X — C along f. By the
formula for constructing left Kan-extensions along maps between spaces of [Lemma 2.17]
it suffices to check that for every y € Y, the map exhibits

([Sts] F), = [X,] (F,) = colim (f*F)|x,

in C, or in other words, that

(F)x, = (FF) |x, 2 (] F)x

is a colimit cocone (in Fun(X,,C)).

To see this, note that the restriction of [0] to X, is given by the map induced by [—] on
the restriction of 0 to X,,. But this was defined by applying the straightening construction
to X — X xy X over X. Its restriction to X,, is thus given by straightening the map
given by pulling X — X xy X to a map over X,. This map is simply the diagonal
X, — X, x X, of X;,, We have already seen that the straightening of this map is just the
canonical cocone (i), X, of |Constructi0n 2.12|. Thus, upon taking the action on F, € C,
we get precisely the colimit cone as desired, proving the claim. O

Yy

Construction 4.25. Consider a morphism f: X — Y in S, (,—1). We have the span in
S, Sy

Y%XY‘X
N

Straightening converts this into a span in Fun(Y,S,,)
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The wrong way map is (n—1)-truncated. Recall from [Proposition 1.26|that forming spans
is compatible with exponentials. Thus this is equivalently a morphism in (SQ_I)Y ~

A

Span (S};,SY’(WU) which we denote as (f)y Day — STf

n

Definition 4.26. (cf. [Har20), discussion before Lemma 3.11]) For an infinity category
C satisfying the standing hypothesis (Hypothesis 4.3), and a map f: X =Y in S, (»_1),

denote the transformation the action of (f) induces by
Y

[f]y Doy — [Ste] = fif*

Proposition 4.27. (c¢f. [Har20, Lemma 3.12]) For an infinity category C satisfying the

standing hypothesis (Hypothesis 4.5), and a map f: X — Y in S, (n—1), the so

transformation [f] s loy — fif* is a unit for an adjunction f* — f, that is, exhibits f
Y

as C-ambidextrous.

Proof. We must show that for X EiN C,Y 9, C the composite

([71,9)"

Homex (£*G, F) 297, Homow (G, fiF) Homes (G, i F)

is an equivalence. This is a family of maps functorial in F,G and compatible with
colimits in the G-variable. We have seen in that Fun(Y,C) is generated
under Y-indexed colimits, so it suffices to consider the case where G is 3 C', for an object

C of C and an object * = {y} Y of Y.

Remark 4.28. Assuming for the moment that [ f] is indeed a unit for f* 4 f, then for
Y
any y € Y the composite

“[f].w
1o 25 Yy M’ v hif*y

is a unit for the composite adjunction f*y — y*fi, where n¥ is a unit for y, - y*.

Lemma 4.29. The converse is true. That s, if for every object y € Y, the composite

*1fow
Al s Yy, &’ y*fif*uy

15 a unit for an adjunction f*y - y* f, then [f] 1s a unit for an adjunction f* — fi.
Y

Proof. (of the lemma) By the colimit property, as remarked above it suffices
to show that for every y € Y and C € C, the composite

(f!)f*yIC,]:
) ——

([7]y =€)

Homex (f*yC, F Homey (fif*yC, fiF) Homey (y,C, fiF)

is an equivalence. For this, note that there is a commutative square

(y*)f!f*y!c,f!]:
_—>

Homey (fif*nC, fiF) Home (y* fif*uC, fiy* F)
([7,4)°| * |1y
Homey (yC, fiF) Wwonr > Home (v*uC, fiy*F)
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fitting into a diagram

D iy 0,F ) W) gy pry 00 F
— R

Homex (f*yC, F) Homey (fif*nC, iF Home (y* fif*yC, fiy*F)

\Qﬂym*l * [ 785wy’
Homer (1C,y i) — 22907 Home (y*uC, fiy" F)
\—) HomC(C” f!y*]-’)

The total composite Homex (f*yC, F) — Hom¢(C, fiy*F) is just the adjunction map
for f*y < fiy* and hence invertible. The map Homey (3 C, fiF) — Home(C, fiy* F) is
the adjunction map for y, o y* and is thus invertible as well. Consequently, the map
A is invertible. The invertiblity of A for arbitrary y and C'is precisely what we need to
conclude the lemma. U

To see that the composite A in the hypothesis of the lemma is indeed a unit, consider
for arbitrary y € Y and C' € C the pullback square

X, —— X
J/fyl (o lf
v} —— Y

The identification y* [STf] S [y*S?f] y* ~ [X,]y* can be written in terms of the Beck-
Chevalley transformation BC[o] : (f,), ts — y* fi. Explicitly, the inverse of BC[o] defines
the equivalence as

v [5] = vt ir* S () = () St = 1)

and in particular it is such that
* [Sty]

Thus the second map in the composition defining A, y* [f] y can be identified with the
Y

JY*

composite

[fy]y Y1 BC[o]f*y*

% * % * rx f * *
iy = () (F)" vy = (f), ()" [Py == y* i "y
In particular, this fits into a diagram

*

Y y*| f
% Z y Yty —————— Yy Ay

[fAy]l l[fAy]y*ys TBC[U]f*y*

(fy), ()" (fy), (f) vy —— (fy), (ty)* f*n

and so equivalently we must show that the composite

p: e M (fy) (fy)* Uuth)” (fy) (fy)*y*y! =~ (fy)! (Ly)* [ Sy, y*fif*y

is a unit for f*y, 4 y* fi.

(fy), fiEnY
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To do so, recall that BC[o] is defined as the adjoint of v (fy), ¢}

~ fil) iy = f
where 7, &' are unit and counit for (z,), 4 ¢;. Explicitly, this iﬁ

(s D0 e (), 0% = 4 fy (1), 0 L2225 o

Similarly, the Beck-Chevalley map of the transpose o' of the pullback square o is given
by

(ey) fyn? € yf*yn
(Ly)! f; . (Ly)! f;y*y! =~ (Ly)y LZf*?J' fu
There is a commutative diagram
fonY ~
- > oyt r o )
0y fE l l”byf{,"y*y! lﬁwtjm
ACHIN ey fEy

(Ly f*

LZ (Ly)l f;y*y! —_— LZ (Ly) *f*y' — L*f*y'

whose bottom row is precisely *BC[o]. Consequently, upon applying (f,),, this can be
seen to fit into

[7.] . Gmsy
le ———— () [y —————

(Fdy ey ()i fy

\BC[Z]BC[at]

ol fiEnY (fo)eiBC[o!] y*fif

%C[U;f*y!

(fy)!f;y*y! —_ (fy)zbzf*y!

and thus the composite A (equivalently, ¢) can be further identified with

oi1e 2 (5,

Lemma 4.30. Consider an adjunction

BC[s]BC|o]

(fy)anyfy* * * * *
—— (fy)ty (W) fy ——— v fif 'y

f
C_1°D

g

and equivalences F = F',G LR G'. Then, if n,e are unit and counit for F - G, the
composites

le b GF 25 G'F

Fg L2 fg - 1p

~

are unit and counit for a F' -4 G'.

% (fy)zLjnf
s

120r equivalently, (f,), % )25 (F), Fro* i 280 e,
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Proof. (of the lemma) One checks the triangle identities. We have the diagram

ngg&ﬁ
G

/Q’f’ GFg
BagG g'F's BF'G Ga~1p™1
GFG \Q’f’g'/ \Q}"Q
N A
g GFG' G'Fg g
g’ g’

from which one sees that the precomposition of the triangle map for G’ with 3 is the
postcomposition of 8 with the triangle map of G, that is, 3 itself. As [ is invertible, one
concludes that 1g is a composition of the triangle map as required. A similar argument
demonstrates the triangle identity for F’. O

Instancing the lemma with o = BC[o"], = BC[o] (and the other variables instanced
so that this makes sense), it therefore in fact suffices to show that the composite of the
first two maps in the composition defining ¢ (call this composition ?) is a unit for an

adjunction (v), fr = (fy), L5

unit for f7 — (f,), Thus this map 1 is just the composite unit for the adjunctions

However, we have seen in [Proposition 4.20| that [fy] is a

f; (Ly)!
C 1 CXv L cx
(fy)l L;k

and is thus a unit as desired, proving the claim. O

For an infinity category C satisfying the standing hypothesis (Hypothesis 4.3)and a map
f: X — Y between n-finite spaces, we have already seen that f is weakly ambidextrous,
in particular there is a V’J? produced by the inductive construction of [HopLurl3].

This is defined in terms of a p%, which is a unit for an adjunction 6* — & (where
d: X —> X xy X is the diagonal of f).

But |Proposition 4.27| above establishes that the transformation [5] is also a unit for

~

such an adjunction, and in particular homotopic to u%. Our approach will be to use [3]
Y

as a replacement for uf to define a transformation v; in an identical manner, which can
be identified with the v} of [HopLurl3].

Definition 4.31. Consider an infinity category C satisfying the standing hypothesis
(Hypothesis 4.3)and a morphism f: X — Y in §,,. Denote by ¢, the diagonal of f. Then
we define a transformation v; by forming the pullback square o

X xy X 25 X

fne o s
XﬁY
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and taking the composite

-1 w1 |0 ¥
vie 5N % Ty M» m1105,05m5 = 1oy 0 1oy = 1y
Observation 4.32. Consider an infinity category C satisfying the standing hypothesis
(Hypothesis 4.3). For any morphism f between n-finite spaces, the transformation vy is
equivalent to the transformation u’; produced by the construction of [HopLurl3].
In particular, a morphism f in S, is C-ambidextrous if and only if the transformation
vi: f*fi = ey is a counit of an adjunction f* H fi.

Proposition 4.33. (¢f. [Har20, Lemma 3.11]) For an infinity category C satisfying the

standing hypothesis (Hypothesis 4.5), and a map f: X — Y in S, n_1), the transfor-
f ~

mation [Y] u» [X] induced by the dual span f to f in S*™' can be identified with the

composite

. qz[f] q* - .
Y]~ qq¢" —— afif*¢" ~ pp* ~ [X]

where p and q are the structure maps as in the following diagram.

X ! 'Y
X‘ /
Z
Proof. The first observation is that we can use the fact that the action functor in question,
[—]: 8"' — Fun(C,C) computes with n-finite colimits. Applying it to ¢ = colimy for

instance, we rewrite ¢ [f] q*.
Y

Lemma 4.34. [q! (f) ] ~ q [fA] q*
Y Y
Proof. (of the lemma) The basic idea is the computation that,

a [f] q* = colimyey ([f] q*) ~ colimyey [y* (f) }y*q* ~ [C0|imer y* (f) } = [q! (f) ]
Y vy Jy Y Y Y
More precisely, there is an (essentially) commutative square

Fun(Y,S* 1) — 2 st

(-] *l lH

Fun (Y, Fun (C,C)) —;— Fun(C,C)
such that the image of (f)y in Fun (Y, Fun (C,C)) is precisely [f]y qr. O

It light of the lemma, it suffices to show that ]? can be identified with the colimit of
( f) in S"L. ( f) was obtained as the image under the straightening construction
Y Y

S"/y % Fun (Y, S,), of the span of spaces over Y,

X

/N
N/
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This can be alternatively described in terms of an infinity category of spans of spaces

i
over Y. If we let (Sn / Y) denote the weak CoWaldhausen structure on n /y given

by the (n — 1)-truncated maps over Y, then we have the correspondence

T
Lemma 4.35. Under the straightening construction Sn/y 5% Fun Y, S,), (Sn/y>

corresponds to the weak CoWaldhausen structure (S}L/ )Jr given by the morphisms that are
object-wise (n — 1)-truncated.

Proof. (of the lemma) Consider a map over Y

For every object {y} % Y, the map on the fibers A, — B, can be identified with the
component at y of the image of f under straightening. This fits into a composition of
pullbacks

Ay fy>By qy>{y}
I
A 7 » B —— Y

Consequently, if A — B is (n — 1)-truncated, so is each A, — B,. Further, the fiber of
A — B over an object b of B is a fiber of A, — B,, for y = ¢gb. It follows that dually, if
each A, — B, is (n — 1)-truncated, A — B is as well. O

We have already seen in that the colimit of a functor ¥ — §,, can be
identified with the total space of the Kan fibration over Y that it classifies. This is in
fact an incarnation of a commutative diagram

> Fun (Y, S,)

Sn/y

This is also a commutative diagram of weak CoWaldhausen infinity categories, and by
the lemma the top map is an equivalence still. Thus on passing to spans we have

Span (Sn/y, (Sn/y) T) > Fun (Y, 8" 1)

where the map on the right is indeed the colimit map, as we have seen in|[Observation 2.28]
that the inclusion S,, — 8" ! preserves and detects Y-indexed colimits.
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Thus in order to compute the colimit of ( f) , it suffices to compute the image of
Y

X

/N
N/

Y

~

under the map forgetting the last map to Y, which produces exactly the span f as
desired. U

Notation 4.36. Consider an infinity category C satisfying the standing hypothesis
. The data of an action also includes the data of an “associativity” isomor-
phism, that we denote as m.

More explicitly, we denote for n-finite spaces X, Y the component

myy: [X xY] 5 [X]o[Y]
of mat (X, Y)H, a family of equivalences functorial in X and Y.
We are now ready to prove our desired criterion. Recall that this was,

Proposition 4.37. (¢f. [Har20, Propostion 3.17]) Let C be an infinity category satisfying
the standing hypothesis (Hypothesis 4.5). Then, C is n-semiadditive if and only if for
every n-finite space X, the transformation

[X] o [X] 225 [x x x4

exhibits [ X] as self dual in Fun(C,C).

Proof. What we will do is identify this map with the trace form TrFm,,, where p: X — =«
is the map to the point. We will then be done by |Proposition 4.11, the criterion of
[HopLur13, Proposition 5.1.8] relating ambidexterity with the trace form being a self-
duality evaluation map.

Lemma 4.38. For an infinity category C satisfying the standing hypothesis (Hypothe-
, and n-finite spaces X,Y , form the pullback square

XxY ——25Y
l’fl o lpy
X — =
Denoting by pz for a space Z the map Z — =, the transformation

[X x V] 25 [X]o[Y]

~

can be identified with

® + % (px)BC[o] ¥ * ®
[X x Y]~ (prY)!prY = (pX)! (WX)!WYPY Rkt LA (pX)le (PY)!PY ~ [X]o[Y]

13Recall that the monoidal structure on S?~! acts as the Cartesian product level-wise.
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Proof. (of the lemma) Upon writing X ~ colimy =, Y ~ colimy =, using the compatibility
of actions with n-finite colimits and the identification [#] ~ 1¢, one sees that both maps
are equivalent to the “Fubini isomorphism”

colimxyxy 1le¢ = colimy colimy 1¢

g

Returning to the main proof, recall from [Definition 4.31|that v, was defined by forming
the diagram

XxX 25X

N

X ——F—
and taking the composition

5 *
BC[o]~! ﬂ—l![(s]XxXﬂ—z
. * _—> * - ok ~
Upi P P N 117y 7T1!(5[6 Ty =~ 1CX ¢} 1CX ~ 1CX

with ¢ being the diagonal of X. The composite (p,p*) o mx x can thus be identified
with

~

D1 [5} W;p* =q [5
XxX

*

[
XxX

where by ¢ we denote pxxx: X x X — .
But we already know from |[Proposition 4.33| that this last map is equivalent to the map

induced directly by the dual span FJ o [X x X] — [X]. Thus

~

[p] o (pipp™) omx x ~ [p] o [(5] ~ [po/d\] ~ [Trx]

Consequently we may identify the transformation of the hypothesis, [Trx] o m)_(}X with
[p] o (pv,p*). We have proved in [Proposition 4.19| that [p] : pip* — 1¢ is a counit for the
adjunction py - p*, and in |Deﬁniti0n 4.31| that v, is homotopic to the 1/1’; of [HopLurl3].
Thus [p] o (ppp*) and in turn [Trx] o m;(}x is homotopic to the TrFmy of [HopLurl3],
as desired. We may thus conclude the proposition. O

As remarked before when discussing [Proposition 4.15 from the proposition we have
the corollaries that infinity categories with n-finite colimits and a suitable action of S
are n-semiadditive, and in particular that each S is m-semiadditive.

We conclude this section by quoting without proof another succinct criterion for semi-
additivity.

Corollary 4.39. [Har20, Cor 3.18] For an infinity category C satisfying the standing
hypothesis (Hypothesis 4.3), C is n-semiadditive if and only if for every n-finite space X,

the canonical colimit cocone of |Construction 2.1 «x Lie), Xx induces a cone

2] X0 = By

which is a limit cone, establishing [X] ~ limx 1¢ in Fun(C,C).
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5. THE UNIVERSAL PROPERTY OF S

The main result of [Har2(] is the following universal property of S!". Recall from
[Notation 2.30| that for infinity categories C and D with n-finite colimits, we denote by
Fun,, (C, D) the full subcategory of Fun(C, D) spanned by the functors preserving n-finite
colimits.

Theorem 5.1. (¢f. [Har20, Theorem 4.1]) Take integers —2 < m < n, and C an m-
semiadditive infinity category with n-finite colimits. Then, evaluation at the point defines
an equivalence
ev,: Fun,, (8",C)>C
That is, S)"* is the universal m-semiadditive infinity category admitting n-finite colimits
generated by the point.

Remark 5.2. This universal property, and most of the rest of this section is due to [Har20].
The proof of the universal property itself is a clever yet somewhat technical use of partic-
ular Kan-extensions to demonstrate that the evaluation functor factors through several
equivalences.

We will instead try to demonstrate how this universal property can be used to char-
acterize higher semiadditivity, and to establish that the infinity category Cat,, of n-
semiadditive infinity categories and n-finite colimit preserving functors is itself n-semiadditive.
Regardless, we will mostly follow Harpaz throughout, except that we chose to provide a
slightly different proof of the fact that Cat,, is n-semiadditive.

5.1. The criterion for higher semiadditivity.

Corollary 5.3. Every m-semiadditive infinity category with m-finite colimits has a canon-
ical S -action preserving m-finite colimits variable-wise.

Proof. (of the corollary) We transfer along the equivalence of the theorem the canonical
pre-composition action of S} on Fun,, (S, C) O

We have thus finally established (one implication from [Corollary 4.17|of the last section
and the other by above) our characterization of n-semiadditivity as having
an action of §)' compatible with n-finite colimits. We can promote this to an equivalence
of categories, essentially identifying the appropriate notion of functor between the first
(S'-module functors) with those of the second (functors preserving n-finite (co)limits).

Definition 5.4. For an integer n > —2, let SAdd, be the full subcategory of Cat,,
spanned by the m-semiadditive infinity categories. It can be identified as the infinity
category of n-semiadditive infinity categories and functors preserving n-finite (co)limits.

Notation 5.5. We denote by U: Mods, (Cat,,) — Cat,, the forgetful functor.

Observation 5.6. By our characterization of n-semiadditivity, we see that U induces an
essentially surjective Modsn (Cat,,, ) Y, SAdd,.

Our goal is to show that this map is an equivalence. It is essentially surjective, it
only remains to show that it is fully-faithful. As it is the right adjoint in a free-forgetful
adjunction, we need only equivalently show that the counit of this adjunction is invertible.

Notation 5.7. Let F := S} Qcat,, (—) : Cat,, — Modsn (Cat,,) denote the left adjoint
to U.

Denote by 1 and ¢ respectively, the unit and counit of this adjunction.

Proposition 5.8. The counit € is invertible, that is, the right adjoint U s fully-faithful.
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Proof. We must show for an arbitrary S;'-module C, that the counit map
Ec- SZ ®Cat,¢m Uuc - C

is invertible in Modgr (Cat,,). As U is conservative, it suffices to check that the induced
functor Uee of underlying infinity categories is invertible.

Lemma 5.9. The unit map at an infinity category C,
Nc: C — U (S;Z ®C3tmn C)
1s invertible if and only if C is n-semiadditive.

Proof. (of the lemma) First, if the unit map is an equivalence, then C is n-semiadditive
as U (Sff Qcat,., C) necessarily is. For the converse, let C be n-semiadditive.
For an arbitrary D € Cat,, , restriction along 7c defines a

Fun,, (U (S} ®cat,, C),D) e, Fun,, (C,D)

In light of the adjunction equivalence Fun,,, (U (S? ®cat,, C),D) =~ Fun,, (S, Fun,, (C,D)),
this restriction can be identified with the evaluation

ev,: Fun,, (S, Fun,, (C,D)) ~ Fun,, (U (S ®ca,., C),D) e, Fun,, (C,D)

which the universal property of ;' guarantees is an equivalence. By the Yoneda lemma
applied to Cat,,, the restriction being an equivalence for arbitrary D implies that 7¢ is
an equivalence, proving the converse. O

Uee is (by the triangle identity) a retract of mye. As UC is n-semiadditive, the lemma
tells us that e is invertible, and hence its retract Uec is as well. By conservativity, the
counit is invertible as desired. U

Corollary 5.10. U: Mods: (Cat,,,) — Cat,, defines an equivalence
Mods (Cat,,) — SAdd,

Corollary 5.11. The inclusion SAdd,, © Cat,, has both a left and a right adjomﬂ given
on objects as C — S} ®cat,,, C and C — Fun,, (S),C) respectively.

5.2. Example: Cat,, is n-semiadditive. As a final demonstration of the utility of this
universal property, we show how it can be used to prove that Cat,, is n-semiadditive.
This is also demonstrated in [Har20], but we provide a slightly different proof.

Proposition 5.12. (¢f. [Har20, Proposition 5.26]) Consider an integer n = —2. The
infinity category Cat,, is n-semiadditive.

Proof. We will prove by induction on an integer m, that Cat,, is m-semiadditive for
every —2 < m < n. The case for m = —2 is known to hold a-priori, so we reduce to
having to show that for m > —1, Cat,, is m-semiadditive under the assumption that it
is (m — 1)-semiadditive.

Our first observation is that since an infinity category is k-semiadditive if and only
if its opposite is, it suffices to do the same for Cat}”. Cat,, is complete, with limits
computed as in Cat,. Hence Cat;? is cocomplete, and in particular has a canonical
action of S. Explicitly, this is computed as [X]C =~ colimx C (in Cat}”). As in Cat,,
we can identify Fun (X,C) =~ limx (' we ultimately have [X]C =~ C*. Further, the
action of a u: X — Y in & on C is the map between the respective colimits given by
the action of u on the indices. In terms of the identifications of the form [X]C ~ C¥,

Y Transferred from the left and right adjoints to the forgetful functor I Mods» (Cat,, ) — Caty, .
15The cone maps being given by evaluation.
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the action [u]C: [X]C — [Y]C is the map in Cat,” corresponding to the pullback map
u*: C¥ — C¥ in Cat,,
In any case, we now work in the context of an (m — 1)-semiadditive cocomplete infinity

category Cat,, . Thus [Theorem 5.1, Harpaz’s universal property of S~ (cf. [Har20,
Theorem 4.1]) asserts that evaluation at the point defines an equivalence

ev,: Fun,, (S~ Cat®) > Cat?

and thus Cat” inherits an action of S;~ ! compatible with m-finite colimits variable-wise
(by transferrlng the precomposition action as before). Or put differently, Cat:® satisfies
the standing hypothesis (Hypothesis 4.5) of the previous section.

Our strategy now will be to appeal to [Proposition 4.37] of the previous section, which
in our case will guarantee that Cat}” is m-semiadditive as long as we can show that for
every X € 8™, [Trx]| exhibits [X] as self dual (in Fun,,, (Cat®,Cat)). For this, we
will describe the action of a span Y <~ Z % X.

The first observation is that both the action of S and S~ on Cat?® are induced by
transferring precomposition actions along equivalences given by evaluating at the point.
In particular they fit into a diagram,

Fun,,, (Sm1, Cat® ) ——— Cat®®

Km

T
Fun,.,, (Sm,Cat ) «—— Fun, (S, Cat )

and thus agree on the common restrictions to S,, (justifying our use of the notation [—]
for both).

Next, we show that [X] is indeed self-dual (although we will not do so by showing
directly that [Trx] is a coevaluation). The fact each C € Cat,, has m-finite colimits is
a guarantee of sufficiently many colimits to let us assign to every span Y <~ Z & X of
m-finite spaces the map

Tap: CX 5 07 4 Y
In light of the Beck-Chevalley property, the aforementioned 7-construction is still compat-
ible with composition (up to equivalence). It is similarly compatible with the monoidal
structure (in light of the identifications C**¥ ~ (C¥ )X), and thus preserves dualizable
objects and is also compatible with duals. Thus the map 75, , corresponding to Trx is

a coevaluation establishing [X] as self dual for every X. The only thing remaining is to
identify 75, , and [Trx].

Lemma 5.13. For an infinity category C, the action on C of the dual span f to an
(m — 1)-truncated f: X —'Y is a morphism in Caty? corresponding to C* EiNVG given
by left Kan-extension along f.

Proof. We first show this for a special case, that of a morphism f: X — Y between
(m — 1)-finite spaces X, Y. In 8!, the (m — 1)-finite spaces are dualizable, as both the
trace and its dual span are well defined. Thus we can speak of the monoidal dual of f
in 8”1 and this is indeed seen to be f. Thus, in particular, f acts as the dual of the
action of f. The strategy will be to identify the morphism in Cat,, corresponding to the
dual of [f] with fi. As we know already that [f] is the morphism in Cat;” corresponding

to f*, it will follow that the action of f can be identified with the morphism in Cat}”
corresponding to fi.
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As we have just seen that for every object X there is an evaluation-coevaluation self
duality pair 7,4, 75, (Where p is the map X — ). The dual of [f] as the morphism
acting on a C € Cat;? is the morphism in Cat,,,

[Yle =2 v [x e PR [y [x) e e

this corresponds to the morphism in Cat,,, given by

[x1¢

X Tx, % oXxY (1y xdy), CXXYxY (Ixxfx1y)* X xXxY (6x x1y)* XY (P) oY

which by the colimit formula for left Kan-extensions can be seen to precisely compute
the left Kan-extension (point-wise). This establishes the special case.
Now, for a general (m — 1)-truncated f: X — Y in S, and a C € Cat,,,, we will check

that []?] C corresponds to a morphism CX* — CY in Cat,, computing (point-wise) left
Kan-extension. For an object y € Y, consider the fiber

X, ——» X

lfy‘ o lf

vy} —— Y

The square o fits into a diagram

/\
/\/

from which we see that the span = %i Xy 2, X is the composite ]?o y. Thus in particular
[ f] o [y] is the action of this span.

fle
This acts on C as [#]C Bk, [Y]C L
corresponding to the action [ f] C in Cat}” | the span thus acts as

[X]C. Denoting by A the morphism in Cat,,,

CX i}cY y*=evy C
and computes the action of X\ at y € Y. However the span = J Xy 2, X is also the

composition ¢, o fy and thus acts as [¢,] o [fy] C in Cat}” . We know that ¢, acts as ¢; and

by the special case of maps between (m — 1)-finite spaces we know that fy acts as (fy),-

Thus the action is the map in Cat}”? corresponding to the morphism cX W cX (u) —C
in Cat,,,. But as we have the Beck Chevalley identification (fy), ¢ ~ y*fi, we thus
have constructed an identification y*A ~ y* fi. Therefore, \ acts as the (point—wise) left
Kan-extension, as desired. Il

Consequently, by decomposing the span Y < Z £ X as the composition of p and
the dual span to ¢, we see that it acts on an infinity category C as precisely the map
Top: |Y]C — [X]C in Cat}® . Thus, denoting by p: X — # the map to the point, we can
identify [Trx] and 75, ,. This lets us conclude the inductive step by the trace criterion,
and therefore by induction the proposition. O
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