
THE MITCHELL-BÉNABOU LANGUAGE
SEMINAR: TOPOI, LOGIC, AND FORCING

AREEB S.M.

Abstract. The axioms of set theory are stated in first order logic. The language of set
theory contains, along with standard first order logical symbols the membership symbol
“∈”. In a topos, not only can we canonically interpret the symbols of first order logic,
we can also interpret “membership” in this sense. Doing so yields a versatile tool for
mimicking set theoretic constructions inside a topos.
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1. Formal languages

1.1. Motivation. One uses language to perform mathematics. In this effort, one de-
scribes mathematical structures by making statements, sequences of words that can be
parsed . Formal languages are introduced as a method to turn language into a “meta-
mathematical” object, to attempt precision in describing what can be described in a
rigorous manner.

We start with a vocabulary, which is a collection of symbols, called words. One then
considers sentences, finite (possibly empty) sequences of words. A formal language is a
collection of sentences, which are called axioms.

Typically a formal language is generated by a grammar, a collection of string manipu-
lations called formation rules which are intuitively recipes to construct new well formed
sentences from others.

Remark 1.1. Many authors (for instance, many in computability theory) replace the
word-sentence metaphor with an alphabet-word one, and speak of accepted words instead
of well formed sentences.
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First order languages are a class of formal languages for describing structures. By
“first order” we mean that the existential and universal quantification takes place over
“elements” or “inhabitants” of the structure being described1.

Example 1.2. One could attempt to write a language for monoids by having

• A “constant” word/symbol “1”.
• A “function” symbol “·”.
• “Equality” and “universal quantification” symbols “=” and “∀”.
• “Variable” symbols “g1, g2, g3”.
• Parentheses and the full-stop symbol.

so that we can write the sentences ∀g1.(g1 · 1 = g1 = 1 · g1) and ∀g1.∀g2.∀g3.(g1 · (g2 · g3) =
(g1 · g2) · g3).

Remark 1.3. We will ultimately only use a sentence of the form ∀x.φ as an abuse of
notation. We will really mean a sentence ∀(x ∈ X).φ, or ∀(x : X).φ. Here the symbol X
is the sort of x, intuitively the type of object that x is. We will always quantify over the
inhabitants of a fixed sort.

For instance, in writing a language for 1-categories, we use separate sorts for objects
and arrows, as we want to make sense of source and target symbols which intuitively
take an entity of sort “arrow” to entities of sort “object”, and similarly for the identity
map assignment. We also need to quantify over objects and arrows separately in the
statements encoding the axioms. In the case of one object, the language for monoids
works as we need only quantify over arrows, so we survive with a single implicit sort.

Notation 1.4. For convenience, we will write a string ∀(x1 : X1, x2 : X2, . . . , xn : Xn).
when we mean the string ∀(x1 : X1).∀(x2 : X2). . . .∀(xn : Xn). (also to aid readability).

1.2. First order logic. The vocabulary over which we consider first order languages
includes standard symbols in every first order language (such as equality), as well as
a few symbols that are additional data. These additional symbols belong to certain
distinguished classes, and the notion of a “signature” organizes this data.

Remark 1.5. The main source for this section is [Car14, Section 4.1]. Also mentioned, are
various intermediate fragments of first order logic that have been studied in the literature.

Definition 1.6. The data of a first order signature Σ consists of

• A set Σ−Sort of sorts or types.
• A set Σ−Fun of function symbols, as well as for each function symbol f ∈ Σ−Fun

a finite nonempty sequence of sorts A1, A2, . . . , An, B called the sort of f . The
natural number n here is called the arity of f .
• A set Σ−Rel of relation symbols, as well as for each relation symbol R ∈ Σ−Rel

a finite list of sorts A1, A2, A3, . . . , An called the sort of R. Again, the number n
here is called the arity of R.
• For each sort X ∈ Σ−Sort a collection of mutually distinct symbols called vari-

ables2.

We also call function symbols of arity 0 constants.

Notations 1.7. If f is a function symbol of sort A1, A2, . . . , An, B, we will write

f : A1 × A2 × · · · × An → B

1This is in contrast with say, second order logic where we have a notion of quantifying over “collections
of inhabitants”.

2In particular, each variable has a uniquely determined sort.
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for ease of readability.
Similarly, if R is a relation symbol of sort A1, A2, . . . , An, we denote it as

R� A1 × A2 × . . . An
Remark 1.8. For us, it will be convenient to assume a countably infinite collection of
variables for each sort.

Construction 1.9. Consider a first order signature Σ. Then we define inductively a
class Σ−Term of terms over Σ and a type/sort judgment t : A with A ∈ Σ−Sort for each
t ∈ Σ−Term, as well as a (finite) collection of free variables FV(t).

One starts by considering every variable x of sort X as a term, with the judgment
x : X and FV(x) := {x}. One then continues by introducing for each function symbol
f : A1×A2×· · ·×An → B and terms t1 : A1, t2 : A2, . . . , tn : An the term f(t1, t2, . . . , tn).
This is given the typing judgment f(t1, t2, . . . , tn) : B and one sets FV(f(t1, t2, . . . , tn)) :=⋃n
i=1 FV(ti)

Intuitively, terms are determinations of inhabitants of a structure. We will introduce
“formulae”, which are intuitively well formed strings that are meant to have a “truth
value”. We will inductively construct a class of “first order formulae” over a signature
through a list of string manipulations called “formation rules”.

Definitions 1.10. A formation rule is a string manipulation that takes a family of
formulae (φi)i∈I and a free variable assignment FV(φi) for each i and produces a string
ψ and a collection of free variables FV(ψ).

The first order formation rules are

• Relation: For a relation symbol R� A1×A2×· · ·×An and Σ-terms t1 : A1, t2 :
A2, . . . , tn : An we have a formulaR(t1, t2, . . . , tn), where we set FV(R(t1, t2, . . . , tn))
to be the collection

⋃n
i=1 FV(ti) of all variables occurring in one of the terms ti.

• Equality: For terms t1, t2 of the same sort we have a formula t1 = t2 with
FV(t1 = t2) := FV(t1) ∪ FV(t2).
• Truth: There is a formula > with no free variables (FV(>) := ∅).
• Binary conjunction: For Σ-formulae φ, ψ there is a formula φ∧ψ where we set
FV(φ ∧ ψ) := FV(φ) ∪ FV(ψ).
• Existential quantification: For a formula φ and x : A, we have a formula
∃(x : A).φ where FV(∃(x : A)φ) := FV(φ) \ {x}.
• Falsehood: There is a formula ⊥ with no free variables.
• Binary disjunction: For formulae φ, ψ we have a formula φ ∨ ψ where we set
FV(φ ∨ ψ) := FV(φ) ∪ FV(ψ).
• Implication: For formulae φ, ψ we have a formula φ ⇒ ψ where we define
FV(φ⇒ ψ) := FV(φ) ∪ FV(ψ).
• Negation: For a formula φ, there is a formula ¬φ with the same free variables.
• Universal Quantification: For a formula φ and a variable x : A, there is a

formula ∀(x : A).φ with FV(∀(x : A).φ) := FV(φ) \ {x}
The class Σ−Form of first order formulae over Σ is the smallest class of strings, whose

symbols are either in Σ or are the auxiliary ones ∃,∀, . . . , that is closed under the first
order formation rules.

A first order statement is a first order formula φ such that FV(φ) = ∅.
A first order theory over a signature Σ is a collection of first order statements over Σ.

Remarks 1.11. Our motivating examples are all descriptions by first order theories. In
fact, the standard algebraic examples of groups, rings, etc. can all be modeled by first
order languages over a single sort.



THE MITCHELL-BÉNABOU LANGUAGE 4

As a degenerate case, a signature with no sorts simply reduces to propositional logic
(intuitively, there are no variables to quantify over).

2. Internal language

2.1. Motivation. A topos behaves like a “universe of sets”. In particular, the objects
of a topos should behave like sets. A fundamental operation one can perform on sets is
that, given a set A and a first order formula φ in a single free variable x one can form a
subset {x ∈ A | φ(x)}.

Remark 2.1. This is in fact one of the two axiom schema3 of ZFC, the axiom schema of
specification4.

One needs to restrict to forming subsets of a given set, in order to avoid allowing for
“too large sets” such as the one constructed in Russel’s Paradox (cf. [Rus96])

The corresponding notion for a subset in a topos is that of a subobject. Thus, we might
hope to be able to determine subobjects of an object X in a topos by means of formulae
φ with unique free variables x : X. In particular, we wish to determine subobjects of X
in a manner analogous to {x ∈ X | φ(x)}.

Remark 2.2. The main sources for this section are [MacMoe94, §VI.5] and [Car14, Section
5]

2.2. The internal language of a Heyting Category. The Mitchell-Bénabou language
of a topos is a first order language in the sense of the previous section. However, it also
comes with an “interpretation”, a way of making sense of the notion of a topos “satisfying”
certain formulae.

Definition 2.3. If C is a category with finite products, the canonical signature5 is the
first order signature ΣC which has

• a sort A for every object A of C.
• a function symbol f : A1×A2×· · ·×An → B for every arrow A1×A2×· · ·×An

f−→ B
in C.
• a relation symbol R� A1×A2×· · ·×An for every subobject R of A1×A2×· · ·×An

in C.
• Variables for each sort.

There is a general technique for “interpreting” first order terms over a signature Σ in
a category C with finite products. The necessary data is that of a Σ-structure6.

Definition 2.4. For a first order signature Σ and a category C with finite products, the
data of a Σ-structure M in C is that of

• an object MA of C for every sort A ∈ Σ−Sort.
• an arrow Mf : MA1 ×MA2 × · · · ×MAn →MB in C for every function symbol
f : A1 × A2 × · · · × An → B ∈ Σ−Fun.
• a subobject MR � M1 × MA2 × · · · × MAn in C for every relation symbol
R� A1 × A2 × · · · × An ∈ Σ−Rel.

Remark 2.5. The Σ-structures in a category C with finite products organise into a category
(cf. [Car14]).

3A family of axioms parameterized by first order formulae
4Also called the axiom schema of separation or restricted comprehension
5Also called the internal language.
6An extension of the Tarskian notion of structure one encounters in classical model theory.
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Observation 2.6. The canonical signature of a category C with finite products has a
natural structure in C, called the tautological structure (denoted SC). It simply runs the
definition of the canonical signature in reverse, assigning to each sort, function symbol
and relation symbol the corresponding object, arrow and subobject respectively.

The upshot now is that given a Σ-structure in a C with finite products, we can make
sense of the first order terms in Σ−Term. It will be convenient to work with a slightly
more general notion, that of a term (resp. formula) “in context”

Definitions 2.7. Given a signature, a context is a finite list of distinct variables.
A term (resp. formula) is said to be interpretable in a context x̄ if its free variables are

all contained in x̄.
Any term (resp. formula) has a canonical context that it is interpretable in, given by

its free variables (in order of occurrence, say).
A term (resp. formula) in context is the data of a context x̄ and a term (resp. formula)

φ that it is interpretable in. We will denote it φ[x̄] (or {x̄.φ}).

Construction 2.8. Consider a Σ-structure in a category C with finite products. Then
we define for each Σ-term t : B in a context x̄ = x1 : A1, x2 : A2, . . . , xn : An, an arrow

Mt[x̄] := Mt : MA1 ×MA2 × · · · ×MAn →MB

If t is a variable x : A, x is necessarily xi for some i and we set Mt := πi, the projection
onto the i’th component. We then define recursively

M(f(t1, t2, . . . , tm)[x̄]) := MA1×MA2×· · ·×MAn
(Mtj [x̄])−−−−−→MC1×MC2×· · ·×MCm

Mf−−→ B

for a term made by substituting in a function symbol f : C1 ×C2 × · · · ×Cm → B terms
t1 : A1, t2 : A2, . . . , tm : Am in context x̄.

Notation 2.9. From this point on, if we have a first order signature Σ, a Σ-structure M
in a category C with finite products, and a context x̄ = x1 : A1, x2 : A2, . . . , xn : An we
will set

Mx̄ := A1 × A2 × · · · × An
We have so far been able to interpret terms assuming only that the category C has finite

products. To start interpreting formulae, we will require more categorical structure.

Definition 2.10. A Heyting category is a category C with finite limits, such that

• Every morphism has an image (epi-mono factorization) and these are stable under
pullback.
• The poset of subobjects7 SubC(X) of each object X has finite joins (least upper

bounds/ finite coproducts).
• The pullback functor f • : SubC(b) → SubC(a) associated to any arrow f : a → b

has a right adjoint ∀f .

Construction 2.11. The pullback functor f • : SubC(b) → SubC(a) associated to any
arrow f : a → b in a Heyting category also has a left adjoint ∃f . This is constructed by
simply sending a subobject represented by an arrow a to the image of f ◦ a.

Observation 2.12. If C is a Heyting category, the meet operation on SubC(E) given by
A ∧B := A×E B.

When C has coproducts, the join operation is such that A ∨B is the image of the map
A
∐
B → E.

7We will assume that the subobjects form, at most some kind of “large” set. That is, we will assume
our foundations to be such that this is a genuine poset, in the sense of being a set with a partial order.
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As the joins and meets are respectively, coproducts and products in the subobject poset,
the pullback maps preserve both as they admit both left and right adjoints.

Example 2.13. We have already seen in the course of the seminar so far that topoi
satisfy the heyting category axioms.

For an example of a Heyting category that isn’t a topos8, consider the full subcategory
of the category of sets comprising the at most countable sets. This is a Heyting category
as images and posets of subobjects can be computed as in the category of sets. However,
it cannot be cartesian closed as a consequence of Cantor’s diagonal argument.

Proposition 2.14. (cf. [Joh02, A1.4.13]) If C is a Heyting category, there is a binary
operation ⇒ on each SubC(X) such that for subobjects A and B, A ⇒ B is the largest
subobject C such that C ∧ A ≤ B. This operation further commutes with pullbacks .
Thus, each SubC(E) is a Heyting algebra9, and furthermore the pullback maps are algebra
homomorphisms.

Remark 2.15. In [Car14], one finds also a discussion of “fragments” of first order logic,
which produce subsets of formulae that can be interpreted in more general classes of
categories. However, we will concern ourselves with full finitary first order logic alone, so
that Heyting categories will suffice.

Construction 2.16. Given a Σ-structure M in a Heyting category C, we will construct
for each formula φ in context x̄ = x1 : A1, x2 : A2, . . . , xn : An a subobject Mφ[x̄]�Mx̄
by structural induction.

• If φ = R(t1, t2, . . . , tm) is obtained by the relation formation rule applied to a
relation symbol R� B1 × B2 × · · · × Bm and terms t1 : B1, t2 : B2, . . . , tm : Bm,
one defines the subobject Mφ[x̄] as the pullback

Mφ(x̄) MR

Mx̄ MB1 ×MB2 × · · · ×MBm
(Mti(x̄))

y

• If φ is the formula s = t obtained by the equality formation rule we define
M(s = t)[x̄] to be the equalizer of the arrows Ms[x̄],Mt[x̄] : Mx̄ → MB, where
B is the sort of s (and t).
• M>[x̄] is the maximal subobject 1Mx̄. M⊥[x̄] is similarly the minimal subobject
⊥ ∈ SubC(Mx̄).
• For formulae obtained by applying the various propositional connectives ∨,∧,¬,⇒

to formulae in context, say φ[x̄] and ψ[x̄], we simply apply the Heyting algebra
operations of SubC(x̄) to Mφ[x̄] and Mψ[x̄].
• For a formula φ in context x̄, y : B, denote by π : Mx̄×MB →Mx̄ the projection.

One then sets M∃(y : B)φ[x̄] := ∃π(Mφ[x̄, y : B]) and similarly M∀(y : B)φ[x̄] :=
∀π(Mφ[x̄, y : B]).

Definition 2.17. We will say that a formula φ in context x̄ is satisfied by a Heyting
category C if Mφ[x̄] is the top element 1Mx̄. In this case we write C � φ[x̄].

Observation 2.18. For a formula φ in context x̄, x : A, we have C � φ[x̄, x : A] if and
only if C � ∀(x : A).φ[x̄].

8The author learned of this example from Andreas Blass.
9One sets ¬A := A⇒ ⊥ as usual
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Proof. Assume that C � φ[x̄, x : A], i.e. Mφ[x̄, x : A] = >. Then, as the interpretation
of ∀(x : A)φ[x̄] is obtained by applying the right adjoint ∀π, this preserves the terminal
object > and hence C � ∀(x : A)φ[x̄].

For the converse, assume that C � ∀(x : A)φ[x̄], so that ∀πMφ[x̄, x : A] = >. Then
on applying the right adjoint π• of ∃π we see π•∀πMφ[x̄, x : A] = >. But in light of the

counit map π•∀πMφ[x̄, x : A]
εMφ[x̄,x:A]−−−−−→Mφ[x̄, x : A], we have

> = π•∀πMφ[x̄, x : A] ≤Mφ[x̄, x : A]

hence Mφ[x̄, x : A] = >, proving the converse. �

In particular, to see satisfiability of first order formulae it suffices to consider the case
of first order formulae with no free variables.

3. The Mitchell-Bénabou Language of a topos

3.1. Motivation. We have seen that in a Heyting category, one can interpret full first
order logic (over say, the canonical signature). A topos has two notable categorical
properties that we have not referenced so far – exponential objects10, and the existence
of a subobject classifier.

Remark 3.1. Intuitively, Heyting categories have intrinsically the “first order aspects
of first order logic”. For instance, exponentials and subobject classifiers are intuitively
“second order” objects, as they allow for a notion of parameterizing over families.

In topoi we can in fact make sense of an extension of the internal language, called the
Mitchell-Bénabou language. It will have, in addition to the terms that one forms with
the grammar of the internal language, terms of the form “f(t) : B” (where t is a term of
type A and f is a term of type BA), “λ(x : X).φ” and new formulae of the form “x ∈ E”.

Remark 3.2. The term f(t) intuitively corresponds to the evaluation of such an f at t.
Complementing it is the term λ(x : X).φ. Here we have a term φ : B interpretable in
context x̄, x : X and produce one interpretable in the context x̄. Intuitively this is the
assignment “x 7→ φ(x)”.

The formula, x ∈ E, as the notation suggests corresponds to a sort of membership.

3.2. The grammar of the Mitchell-Bénabou language. We will provide a formal
description of the Mitchell-Bénabou language of topos E . We will restrict attention to
the canonical signature of E , and also its tautological structure.

Definition 3.3. The term formation rules of the Mitchell-Bénabou language consist of
the first order formation ones, and the following:

• Application: For terms σ : BA and a : A, we have a term σ(t) : B, with
FV(σ(t)) := FV(σ) ∪ FV(t).
• Abstraction: For a term φ : B and a variable x : A, we have a “lambda-term”
λ(x : A).φ : BA with FV(λ(x : A).φ) := FV(φ) \ {x}.
• Pairing: For terms a : A and b : B we have a term (a, b) : A×B with FV ((a, b)) :=
FV(a) ∪ FV(b).

Warning 3.4. We unfortunately have two ways of generating terms of the form f(t), one
from terms f : BA and one from function symbols f : B → A. We will attempt to be
explicit about the types of f and t in all instances, and distinguish the two by context.

Definition 3.5. The formula formation rules of the Mitchell-Bénabou language consist
of the first order formation rules, and

10For instance, the Heyting category of at most countable sets does not even have all exponentials.
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• Membership: For terms a : A and E : PA, we have a formula a ∈ E, with
FV(a ∈ E) := FV(a) ∪ FV(E).

Construction 3.6. We extend the canonical interpretation M of the internal language of
a topos in itself to the Mitchell-Bénabou language by extending the inductive construction
of the previous section. On terms:

• Consider a term σ(t) in context x̄ obtained by applying the Application term
formation rule to terms σ[x̄] : BA and t[x̄] : A. Then we define Mσ(t)[x̄] to be the

composite Mx̄
(Mσ,Mt)−−−−−→ BA × A ev−→ B where ev is the counit of the adjunction

(−)× A a (−)A.
• Consider a term in context λ(x : A).φ[x̄] : BA obtained by the Abstraction

term formation rule from a term φ[x̄, x : A] : B, for a variable x : A. Then we
define the arrow Mλ(x : A).φ[x̄] : Mx̄ → BA to be the exponential transpose of
Mφ[x̄, x : A] : Mx̄× A→ B.
• Consider a term in context (a, b)[x̄] : A× B obtained from terms a : A and b : B

in context x̄ by the Pairing rule. We then interpret to be the universal map
M(a, b)[x̄] := (Ma[x̄],Mb[x̄]) : Mx̄→ A×B

Remark 3.7. Note that to interpret all the terms of the Mitchell-Bénabou language, it
suffices to have finite products and exponentials, that is to work in a cartesian closed cat-
egory. Cartesian closed categories are in some sense the categories that one can interpret
simply typed λ-calculus (indeed, related to the suggestive λ-abstraction rule).

In light of this one can say that the Mitchell-Benabou language of a topos combines
both the expressive power of first order logic (which required the structure of a heyting
category) and that of simply typed λ-calculus (as topoi are also cartesian closed).

And on formulae, if (a ∈ E)[x̄] is a formula in context obtained from terms a[x̄] : A and
E[x̄] : PA from the Membership formula formation rule, we define M(a ∈ E)[x̄]�Mx̄
by the pullback

M(a ∈ E)[x̄] “ {(x, T ) | x ∈ T} ” ∗

Mx̄ A× PA Ω
∈A

>

(Ma[x̄],ME[x̄])

yy

3.3. An alternate Mitchell-Bénabou language. We have interpreted a formula φ
in context x̄ as a subobject of Mx̄. In a topos, we can use the subobject classifier to
equivalently interpret φ[x̄] as an arrow Mx̄→ Ω. This is the point of view Mitchell takes
in [Mit72].

However, here one still distinguishes formulae and terms, even though a formula and
a term of type Ω in context x̄ are both interpreted as an arrow Mx̄ → Ω. For instance,
one cannot construct a formula of the form (a ∈ E) = (b ∈ F ), as this would require
the Equality formation rule to be applied to two formulae obtained from the Member-
ship formation rule. This is in contrast to the approach of Maclane and Moerdijk in
[MacMoe94], where one translates the formula formation rules into term formation rules,
and simply defines formulae as those terms of type Ω (with the same free variables).

Precisely, we have

• The Relation formation rule now forms out of a relation symbol R � B1 ×
B2 × · · · × Bm and terms t1 : B1, t2 : B2, . . . , tm : Bm in context x̄ a term

R(t1, t2, . . . , tm) : Ω, interpreted as the composite of Mx̄
(Mti[x̄])−−−−→ B1×B2×· · ·×Bm

with the map B1 ×B2 × · · · ×Bm → Ω the subobject R classifies.
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• Instead of an Equality formula formation rule, we have for terms s, t of the same
sort E a term s = t of type Ω. Given a context x̄ that s = t is interpretable in, we

set the interpretation of (s = t)[x̄] to be the composite of Mx̄
(Ms[x̄],Mt[x̄])−−−−−−−−→ E ×E

with the map χδE : E × E → Ω classifying the diagonal δE : E → E × E.
• Truth and Falsehood simply specify terms >,⊥ of type Ω and are interpreted

as the corresponding truth values ∗ → Ω.
• The propositional connectives ∨,∧,⇒,¬ now take terms of type Ω to terms of

type Ω and can in fact be seen as being induced by the maps ¬ : Ω → Ω and
∨,∧,⇒ : Ω× Ω→ Ω in the topos.
• The descriptions of Existential and universal quantification are essentially the

same, except that one works with classifying maps instead of subobjects. How-
ever, one can show that the adjoint functors on the subobject posets are really a
consequence of the two “internal adjoints” ∃X ,∀X : ΩX → Ω.
• The Membership rule now produces a term (a ∈ E) : Ω from a : A and E : ΩA,

and in a context x̄ it is just interpreted as the composite

Mx̄
(ME[x̄],Ma[x̄])−−−−−−−−→ ΩA × A→ Ω

Examples 3.8. To end this section, we list some examples of familiar notions being
described by the Mitchell-Bénabou language

• An arrow f : X → Y in a topos E is a monomorphism if and only if

E � ∀(x, x′ : X).(f(x) = f(x′)⇒ x = x′)

• A topos E is Boolean if and only if E � ∀(p : Ω).(p ∨ ¬p)
• A topos E satisfies the internal axiom of choice of the previous talk if and only if

for every pair of objects X, Y of E
E � ∀(f : Y X).((∀(y : Y ).∃(x : X).(f(x) = y))⇒ (∃(g : XY ).∀(y : Y ).(f(g(y)) = y)))

• One encodes the axiom of dependent choice as

E � ∀(x : X)∃!(y : Y ).φ(x, y)⇒ ∃(f : Y X).∀(x : X).φ(x, f(x))

for every formula φ interpretable in the context x : X, y : Y .
• The object of epimorphisms, Epi(X, Y ) � Y X that we encountered in previous

talks can be described as the subobject that is that interpretation of the formula

∀(y : Y ).∃(x : X).(f(x) = y)

with free variable f : Y X .

Remark 3.9. To see that the above examples do work as we have claimed, one can unwind
all the definitions and check directly. However, the technique of working with a semantics
(as we will introduce in the next section) provides a versatile tool for showing these kinds
of equivalences.

4. Kripke-Joyal semantics

4.1. Motivation. Semantics is intuitively the process of turning a formula in some
formal language (the “internal” system) into a statement in the “ordinary/naive” lan-
guage that we work in (the “external” system). For instance, a statement of the form
“x ∈ {a | φ(x) ∨ ψ(x)} if and only if φ(a) or ψ(a)” would be an application of a semantics
(for set theory, say).

In practice, when one proves a statement of the form ∀(x ∈ X).φ one usually proves
φ(a) for a “general element” a of X. Classical (Tarskian) Kripke semantics is an extension
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of this, giving a notion of satisfaction (called forcing, as Kripke was originally inspired
by Cohen’s forcing) of a formula by a tuple of elements.

In a topos, one must replace elements α ∈ X by “generalized elements”, that is arrows
α : U → X. We will define for a formula φ in context x̄, and a generalized element
U

α−→ X a notion of “α forcing φ[x̄]”, denoted U 
 φ[α/x̄] in terms of the external
categorical properties of the topos.

As the Yoneda lemma determines an object by its generalized elements, Kripke-Joyal
semantics are an excellent tool in analyzing structures defined internal to a topos in terms
of the Mitchell-Bénabou language.

4.2. A semantics for the Mitchell-Bénabou language. We will work with a topos
E throughout, and our formulas will be in its Mitchell-Bénabou language11.

Definition 4.1. For a formula φ in context x̄ and a generalized element α : U → Mx̄,
one says U 
 φ[α/x̄] if Imα ≤Mφ[x̄], that is we have a diagram

Mφ[x̄] ∗

U Mx̄ Ωα

φ[x̄]

>
y

Example 4.2. For instance, if φ is a formula with no free variables (so that the canonical
context is empty) and ∗ 
 φ if and only if φ is >.

Observation 4.3. (Monoticity) Consider a formula in context φ[x̄] and a pair of com-

posable arrows U ′
β−→ U

α−→Mx̄ in E. If U 
 φ[α/x̄], then U ′ 
 φ[(α ◦ β)/x̄].

Remark 4.4. Classically, one considers the notion of a poset of states, that may or may
not force a formula. One has monoticity within the poset, this is intuitively gaining more
information upon increasing in the poset12.

In a topos, one can thus think of restricting along β as being more specific about the
generalized elements we consider.

Observation 4.5. (Local character) Consider a formula in context φ[x̄], as well as in E
a generalized element U

α−→Mx̄ and an epimorphism U ′ � U . If U ′ 
 φ[(α ◦ β)/x̄], then
U 
 φ[α/x̄].

Proof. The hypothesis is the data of a diagram

Mφ[x̄] ∗

U ′ U Mx̄ Ω

ι

pMφ[x̄]

>

φ[x̄]αβ

y
u

Recall that the monomorphism ι is the equalizer of the map φ[x̄] : Mx̄→ Ω and the map

Mx̄
pMx̄−−→ ∗ >−→ Ω. Now

φ[x̄] ◦ α ◦ β = > ◦ pMφ[x̄] ◦ u = > ◦ pMx̄ ◦ ι ◦ u = > ◦ pMx̄ ◦ α ◦ β

11We will therefore use then the extension of the canonical signature and tautological structure de-
scribed in the previous section .

12Indeed, in temporal logic, one is concerned with formalizing statements that are “time dependent”.
There are Kripke-semantics for temporal logics, where ascending in the poset will directly correspond to
a progression of time.
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Consequently as β is epic,
φ[x̄] ◦ α = > ◦ pMx̄ ◦ α

and therefore α factors into the equalizer Mφ[x̄], that is U 
 φ[α/x̄]. �

Observation 4.6. In a topos E, and a formula φ in context x̄ in the Mitchell-Bénabou
language, we have E � φ[x̄] if and only if for every generalized element α : U → Mx̄,
U 
 φ[α/x̄].

Remark 4.7. In practice, we will mostly be interested in concluding that a topos satisfies
a formula in context by checking that generalized elements force it. In light of image
factorization, it will suffice to check that subobjects force the proposition. In other words
the conditions of the observation are equivalent to the fact that for every subobject
α : U �Mx̄, U 
 φ[α/x̄].

Classically, the notion of forcing is defined by a structural induction on the formation
rules of formulae. For instance it can be shown that for terms t, s : A in context x̄, a
generalized element U

α−→ Mx̄ forces (t = s)[x̄] if and only the arrow α equalizes the
arrows Mt,Ms : Mx̄→MA = A.

It is in light of this equivalent definition13 that the above observation gains significance.
It gives us a way to demonstrate the satisfaction of certain properties by a topos, which
is of use in practice.
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