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Remark 0.1. We will primarily follow [Adams, Sections 6,9] from which we take
most of the first section of this report and much of the second. We also cite
[Switzer, in particular Chapter 13 on products] for the definitions of (commutative)
ring spectra and the statements related to them, where in addition to the proofs
we reproduce one can also find proofs for many of the claims stated without them.

1. Homology and Cohomology

Remark 1.1. We will assume all spectra to be CW-spectra. Similarly, all pairs of
spectra will be pairs (X,A) for X a CW-spectrum and A a CW-subspectrum.

Notation 1.2. We denote by S the Sphere spectrum Σ∞S0.

Notations 1.3. We denote by hCW-Spec the homotopy category of CW-spectra.
We denote by GrAb the category of Z-graded abelian groups and degree preserving
group homomorphisms.

Definition 1.4. The functor ∧ : hCW-Spec × hCW-Spec → hCW-Spec defines on
composition with the “hom functor” [S,−] : hCW-Spec→ GrAb a functor

[S,−] ◦ ∧ : hCW-Spec× hCW-Spec→ GrAb

which assigns functorially to each E a functor E∗ : hCW-Spec→ GrAb such that

En(X) := [S, E ∧X]n

which we call E-homology. Equivalently, we may define it as:

En(X) = [Sn, E ∧X]

where Sn = ΣnS (for instance, to avoid dealing explicitly with spectrum maps of
non-zero degree).

The action of E∗ on a morphism f : X → Y is given by post-composition by
1E ∧ f and is denoted f∗ := E∗(f) : E∗(X)→ E∗(Y ).
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2 SEMINAR: INTRODUCTION TO STABLE HOMOTOPY THEORY

Definition 1.5. For each spectrum E we also assign functorially in E a functor
E∗ : hCW-Specop → GrAb, the E-cohomology such that

En(X) := [X,E]−n

Equivalently, we may define it as

En(X) = [X,ΣnE]

The action of E∗ on a morphism f : X → Y is by pre-composition and is denoted
by f∗ := E∗(f) : E∗(Y )→ E∗(X).

Notation 1.6. The constructions of E-homology and E-cohomology are also func-
torial in the spectrum E, and in particular a morphism f : E → F induces
f∗ : E∗(−) → F∗(−) (resp. f∗ : E∗(−) → F ∗(−)) by post-composition by f ∧ 1
(resp. f).

Proposition 1.7. A cofibre sequence X → Y → Z of spectra induces for each
spectrum E exact sequences

En(X)→ En(Y )→ En(Z)

En(Z)→ En(Y )→ En(X)

Similarly, a cofibre sequence E → F → G of spectra induces for each spectrum X
exact sequences

En(X)→ Fn(X)→ Gn(X)

En(X)→ Fn(X)→ Gn(X)

Proof. This is ultimately a translation of the result proved earlier in the seminar
that the hom-functors ([−, E], [X,−]) take cofibre sequences to exact sequences.

The only other observation required (for the case of homology) is that smashing
with a fixed spectrum preserves cofibre sequences. This follows as the proposition
reduces to checking that this holds for the ”naive” smash product ∧BC with B,C
infinite and the sequence A→ X → X ∪ CA (for A a subspectrum of X). �

Proposition 1.8. There are natural isomorphisms

En(X) ∼= En+1(S1 ∧X)

En(X) ∼= En+1(S1 ∧X)

Observation 1.9. For a spectrum E, En(S) ∼= E−n(S) = πn(S)

Definition 1.10. For a spectrum E, define functors Ẽ∗ : hCW∗ → GrAb and
Ẽ∗ : hCWop

∗ → GrAb obtained by restricting E∗ and E∗ along the suspension spec-
trum functor Σ∞ : hCW∗ → hCW-Spec. That is,

Ẽ∗(X) := E∗(Σ
∞X)

Ẽ∗(X) := E∗(Σ∞X)

Observation 1.11. As the functor Σ∞ commutes with suspension and preserves
cofibre sequences, the preceding two propositions imply that the functors Ẽ∗, Ẽ

∗

satisfy the long exact sequence and suspension axioms for a reduced (co)homology
theory in the sense of Eilenberg-Steenrod.
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Proposition 1.12. For a spectrum E, Ẽ∗ is a reduced homology theory and Ẽ∗ is
a reduced cohomology theory on based CW-complexes.

Conversely, any reduced (co)homology theory on based CW-complexes derives
from a spectrum in this manner.

Remarks 1.13. To see that the functors so defined are indeed (co)homology theories,

in light of the above observation we need only show that Ẽ∗, Ẽ
∗ satisfy the wedge

axiom. For cohomology, this is direct from the definition in terms of hom-functors
as we have shown that the wedge is the coproduct in hCW-Spec. Conversely, by
Brown representability one shows that every reduced cohomology theory derives
from a spectrum, as in Talk 2. One concludes the proposition for the case of
cohomology.

The case for homology is more subtle. We have already seen that for finite
wedges, it can be deduced from the cofibre sequence X → X ∨ Y → Y . One shows
that for a spectrum E the functor Ẽ∗ satisfies for a CW-complex X

Ẽ∗(X) = colimY⊆X,Y finite Ẽ∗(Y )

and one deduces the full wedge axiom for homology. For the converse, Adams
(cf. [Adams, Section 6, Page 200]) sketches a proof that any reduced homology
theory on spaces satisfying also the above colimit condition arises from a spectrum
in this manner. It can be shown ([Switzer, Remark 1 immediately following Cor
14.36]) that for any reduced homology theory in the sense of Eilenberg-Steenrod
this colimit condition holds (using only the standard wedge axiom). Thus we see
that the converse holds for homology as well.

Examples 1.14. Some (co)homology theories determined by spectra of interest
are:

• If HA is the Eilenberg-Maclane spectrum associated to an abelian group
A (recall π0(HA) = A and πn(HA) = 0 otherwise) then the (co)homology
theory so defined is ordinary reduced (co)homology with coefficients in A.

• The sphere spectrum S defines a homology theory that recovers the stable
homotopy groups, and the cohomology theory it defines is stable cohomo-
topy.

• The spectrum KU which arises in complex K-theory defines a cohomology
theory which agrees on finite CW-complexes with the definition of K-theory
as the isomorphism classes of complex vector bundles over the space. The
determination of the coefficient groups is precisely determined by (one ver-
sion of) the (complex) Bott periodicity theorem. There are also variations
on this theme such as K-theory with coefficients, connective K-theory, etc.

• The spectrum KO which arises in real K-theory plays an analogous role.
The cohomology theory now determines isomorphism classes of real vector
bundles on finite complexes, and the real Bott periodicity theorem describes
its coefficient groups. Again there are connective variants with coefficients.

• Many Thom spectra determine bordism and cobordism theories. For in-
stance MO, MSO and MU determine unoriented, oriented and complex
(co)bordism.

Theorem 1.15. (Whitehead) The equivalence E ∧ X ∼−→ X ∧ E induces an iso-
morphism E∗(X) ∼= X∗(E).

Corollary 1.16. For abelian groups A and B, HA∗(HB) ∼= HB∗(HA)
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Definition 1.17. For an abelian group A, a Moore spectrum for A (alternatively,
of type A) is a spectrum M such that

πr(M) = 0 r < 0

π0(M) = (HZ)0(M) = A

(HZ)r(M) = 0 r > 0

Remark 1.18. There exists a Moore spectrum for any abelian group A, indeed A
has a free resolution

0→ Z⊕B → Z⊕C → A→ 0

then the cofibre of the map
∨
B S→

∨
C S that induces Z⊕B → Z⊕C can be shown

to define a Moore spectrum for A.

Definition 1.19. For a spectrum E, we define the corresponding “Spectrum with
coefficients in A” to be EA := E ∧M where M is a Moore spectrum for A.

Remark 1.20. Much as in classical (co)homology theory on spaces there are several
exact sequences associated to a change of coefficients. For instance, there is a
sequence of the form

0→ En(X)⊗A→ (EA)n(X)→ TorZ1 (En−1(X), A)→ 0

Classically given a reduced (co)homology theory E on based CW-complexes, one
defines a (co)homology theory on CW-pairs by defining it on the pair (X,A) to be

the value of E at the homotopy cofibre X ∪CA ' X�A, the construction of which
is functorial in maps of pairs. The same can be done for spectra.

Definition 1.21. Given a spectrum E and a pair of spectra (X,A) (so A is a closed
CW-subspectrum of X) we define the relative (co)homology as

E∗(X,A) :=E∗(X ∪ CA) ∼= E∗(X/A)

E∗(X,A) :=E∗(X ∪ CA) ∼= E∗(X/A)

The properties we have just shown for the functors E∗ and E∗ all translate into
properties of the functors on pairs so defined. Further as Σ∞ preserves cofibre
sequences, the functors E∗(−, •), E∗(−, •) restrict along it to give (co)homology
theories on pairs of CW-complexes as expected.

One useful tool in computing these groups for spaces is the LES associated to a
triple, i.e two nested subcomplex inclusions Z ⊆ Y ⊆ X. It then takes the form
(for homology, and dually for cohomology)

· · · → En(Y,Z)→ En(X,Z)→ En(X,Y )→ En−1(Y,Z)→ . . .

One proves this for based spaces by constructing a “sine-wave” of cofibre se-
quences as below (commuting up to homotopy)

Z X X ∪ CY Σ(Y ∪ CZ)

Y X ∪ CZ ΣY Σ(X ∪ CZ)

Y ∪ CZ ΣZ ΣX
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and taking the LES induced by the constructed cofibre sequence

Y ∪ CZ → X ∪ CZ → X ∪ CY

Now the same diagram can be constructed for spectra (and now commutes on
the nose in the homotopy category), so we get the same cofibre sequence but now
of spectra, and can take the associated LES.

We recall that this is done by extending the sequence, for instance to the right
as

Y ∪ CZ → X ∪ CZ → X ∪ CY → Σ(Y ∪ CZ)→ . . .

Then we know that applying En gives us an exact sequence, and in light of the
suspension isomorphism En(Σ(Y ∪ CZ)) ∼= En−1(Y ∪ CZ) we get the desired se-
quence.

Remark 1.22. More generally, given f : Z → Y, g : Y → X and setting h := g ◦ f
one can form an analogous diagram of cofibre sequences

Z X X ∪g CY Σ(Y ∪f CZ)

Y X ∪h CZ ΣY Σ(X ∪h CZ)

Y ∪f CZ ΣZ ΣX

This is precisely the statement of Verdier’s axiom. Indeed, one can show that
hCW-Spec is triangulated when the cofibre sequences are taken to be the distin-
guished triangles.

Another tool used in computation is the Mayer-Vietoris sequence. Again, it will
take the form of a cofibre sequence.

Proposition 1.23. If a CW-spectrum is X is the union of two closed CW-subspectra
U, V then there is a cofibre sequence

U ∩ V (iU ,−iV )−−−−−−→ U ∨ V <iU ,iV >−−−−−−→ U ∪ V = X

which can be continued by the translated cofibre sequence

U ∨ V <iU ,iV >−−−−−−→ U ∪ V = X → Σ(U ∩ V )

where the map U ∪ V → Σ(U ∩ V ) can be described as the composite

U ∩ V → U ∩ V�V ∼=
U�U ∩ V → Σ(U ∩ V )

or alternatively as the additive inverse of the composite

U ∩ V → U ∩ V�U ∼=
V�U ∩ V → Σ(U ∩ V )

Corollary 1.24. Given a spectrum E and a decomposition X = U ∪ V as in the
proposition, continuing the cofibre sequence as usual and taking (co)homology gives
long exact sequences

· · · → En(U∩V )→ En(U∨V ) ∼= En(U)⊕En(V )→ En(U∪V )→ En−1(U∩V )→ . . .

· · · → En−1(U∩V )→ En(U∪V )→ En(U∨V ) ∼= En(U)⊕En(V )→ En(U∩V )→ . . .
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2. Products

Classically, the Eilenberg-Zilber theorem establishes (inverse) chain equivalences

C∗(X)⊗ C∗(Y )
µ−→ C∗(X × Y )

∆−→ C∗(X)⊗ C∗(Y )

which induce by pre and post composition the “external products”

µ∗ : H∗(X)⊗H∗(Y )→ H∗(X × Y )

∆∗ : H∗(X)⊗H∗(Y )→ H∗(X × Y )

One can also consider µ as encoding a C∗(Y )-parametrised family of maps
C∗(X)→ C∗(X × Y )↔ C∗(X × Y )→ C∗(X), precisely a C∗(X × Y )⊗ C∗(Y )→
C∗(X) encoding a “slant-product”

H∗(X × Y )⊗H∗(Y )→ H∗(X)

Analogously, there is another slant product

H∗(X)⊗H∗(X × Y )→ H∗(Y )

induced by a similar map C∗(X)⊗ C∗(X × Y )→ C∗(Y ).
We will perform analogous constructions for spectra. In fact, we will derive

“products” (of the form E∗(X)⊗F∗(Y )→ G∗(X ∧Y ) for instance) given any map
E ∧ F → G of spectra. Our strategy will be first to define products in the special
case that this map is the identity (so E∗(X)⊗F∗(Y )→ (E∧F )∗(X ∧Y ) if we stick
with the previous example). We will then use the functoriality of our (co)homology
construction to get the full range of products.

Definitions 2.1. For spectra E,F,X, Y we have the following four products

• The exterior product in cohomology is a map

∧̄ : Ep(X)⊗ F q(Y )→(E ∧ F )p+q(X ∧ Y )

f ⊗ g 7→f ∧ g

for X
f−→ E ∈ Ep(X), Y

g−→ F ∈ F q(Y )
• The exterior product in homology is a map

∧ : Ep(X)⊗ Fq(Y )→(E ∧ F )p+q(X ∧ Y )

f ⊗ g 7→S ∼= S ∧ S f∧g−−→ E ∧X ∧ F ∧G ∼= E ∧ F ∧X ∧ Y

for S f−→ E ∧X ∈ Ep(X),S g−→ F ∧ Y ∈ Fq(Y )
• The first slant product is a map

/ : Ep(X ∧ Y )⊗ Fq(Y )→(E ∧ F )p−q(X)

f ⊗ g 7→X 1∧g−−→ X ∧ F ∧ Y ∼= X ∧ Y ∧ F f∧1−−→ E ∧ F

for X ∧ Y f−→ E ∈ Ep(X ∧ Y ),S g−→ F ∧ Y ∈ Fq(Y )
• The second slant product is a map

\ : Ep(X)⊗ Fq(X ∧ Y )→(E ∧ F )−p+q(Y )

f ⊗ g 7→S g−→ F ∧X ∧ Y ∼= X ∧ F ∧ Y f∧1−−→ E ∧ F ∧ Y

for X ∧ Y f−→ E ∈ Ep(X ∧ Y ),S g−→ F ∧ Y ∈ Fq(Y )
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Proposition 2.2. The four products are biadditive (Z-bilinear), so in fact do give
well defined products out of the tensor product.

Again, we can relativise this by restricting along (X,A) 7→ Σ∞
(
X�A

)
. We also

observe that X�A ∧
Y�B ∼=

X × Y�(A× Y ∪X ×B).

Notation 2.3. For CW-pairs (X,A), (Y,B) we set

(X,A)× (Y,B) := (X × Y,A× Y ∪X ×B)

Proposition 2.4. The four products relativise to products

• Ep(X,A)⊗ F q(Y,B)
∧̄−→ (E ∧ F )p+q((X,A)× (Y,B))

• Ep(X,A)⊗ Fq(Y,B)
∧−→ (E ∧ F )p+q((X,A)× (Y,B))

• Ep((X,A)× (Y,B))⊗ Fq(Y,B)
/−→ (E ∧ F )p−q(X,A)

• Ep(X,A)⊗ Fq((X,A)× (Y,B))
\−→ (E ∧ F )−p+q(Y,B)

Notation 2.5. The construction of (co)homology is also functorial in maps of
spectra of nonzero degree. Adams follows the following sign convention. For a map
f : X → Y of degree d, we will define the action f∗ : En(Y ) → En−d(X) to act as
f∗(u) = (−1)dnu ◦ f . The functoriality in E, as well as both kinds of functoriality
for homology takes place by some form of post-composition and is not assigned a
sign change.

Remark 2.6. We will ourselves be unaffected by this sign convention, as we will
mostly be concerned with functoriality along degree zero maps (for instance twists).
Regardless we describe the compatibility of the products with maps of nonzero
degree in the following two propositions.

Proposition 2.7. Fix f : X → X ′, g : Y → Y ′ of any degree (denoted |f |, |g|),
then we have the following relations

• For u ∈ E∗(X ′), v ∈ F ∗(Y ′) we have (f∧g)∗(u∧̄v) = (−1)|g||u|(f∗u)∧(g∗v)
• For u ∈ E∗(X), v ∈ F∗(Y ) we have (f ∧ g)∗(u∧v) = (−1)|g||u|(f∗u) ∧ (g∗v)
• For u ∈ E∗(X ′∧Y ′), v ∈ F∗(Y ) we have ((f∧g)∗u)/v = (−1)|g||u|f∗((u/g)∗v)
• For u ∈ E∗(X ′), v ∈ F∗(X∧Y ) we have u\((f∧g)∗v) = (−1)|g||f |+|g||u|+|f ||u|g∗((f

∗u)\v)

Proposition 2.8. For e : E → E′, f : F → F ′ of any degree we have

(e ∧ f)∗(u ? v) = (−1)|f ||u|(e∗(u) ? f∗(v))

where ? is any one of the four product operations and u, v are such that the equation
is well formed.

Definitions 2.9. A ring spectrum is a CW-spectrum E with the data of a “prod-
uct” µ : E ∧ E → E and “identity” ι : S → E such that the following diagrams
commute in hCW-Spec.

E ∧ E ∧ E E ∧ E

E ∧ E E

1∧µ

µ∧1 µ

µ

S ∧ E E ∧ E E ∧ S

E

ι∧1

l
µ

r

1∧ι
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A ring spectrum E (or more precisely (E,µ, ι)) is further commutative if

E ∧ E E ∧ E

E

µ µ

c

A module over a ring spectrum E is a spectrum F with the data of an “action”
α : E ∧ F → F such that

E ∧ E ∧ F E ∧ F

E ∧ F F

1∧α

µ∧1 α

α

S ∧ F E ∧ F

F

ι∧1

l
α

A ring spectrum E gives us through the pairing µ products

• ∧̄ : Ep(X)⊗ Eq(Y )→ Ep+q(X ∧ Y )
• ∧ : Ep(X)⊗ Eq(Y )→ Ep+q(X ∧ Y )
• / : Ep(X ∧ Y )⊗ Eq(Y )→ Ep−q(X)
• \ : Ep(X)⊗ Eq(X ∧ Y )→ E−p+q(Y )

with analogous relative versions of the same.

Remark 2.10. Of course, for a module F over a ring spectrum E we get in the same
way products

• ∧ : Ep(X)⊗ F q(Y )→ F p+q(X ∧ Y )
• ∧ : Ep(X)⊗ Fq(Y )→ Fp+q(X ∧ Y )
• / : Ep(X ∧ Y )⊗ Fq(Y )→ F p−q(X)
• \ : Ep(X)⊗ Fq(X ∧ Y )→ F−p+q(Y )

and analogous relative versions of the same.

Our goal will be to show that for a CW-complex X and a commutative ring
spectrum E, E∗(X) := E∗(X, ∅) is canonically a graded commutative ring such
that for a subcomplex A, E∗(X,A) and E∗(X,A) are both graded modules over
it. We now define precisely which operations give us the ring operations and the
module action.

Definitions 2.11. For E,F spectra and CW-pairs (X,A), (X,B) the diagonal map
induces a map of pairs

δ : (X,A ∪B)→ (X ×X,A×X ∪X ×B) = (X,A)× (Y,B)

We define the “cup product” as the composite

^ : Ep(X,A)⊗F q(Y,B)
∧̄−→ (E∧F )p+q(X×X,A×X∪X×B)

δ∗−→ (E∧F )p+q(X,A∪B)

and the “cap product” as the composite

_ : Ep(X,A)⊗Fq(X,A∪B)
1⊗δ∗−−−→ Ep(X,A)⊗Fq(X×X,X×B∪A×X)

\−→ (E∧F )−p+q(X,B)

In particular, when E is a ring spectrum we get maps

Ep(X,A)⊗ Eq(X,B)
^−→ Ep+q(X,A ∪B)

Ep(X,A)⊗ Eq(X,A ∪B)
_−→ E−p+q(X,B)
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Remarks 2.12. As a special case, setting A = φ we get maps E∗(X) ⊗ E∗(X)
^−→

E∗(X), E∗(X) ⊗ E∗(X,A)
^−→ E∗(X,A), E∗(X) ⊗ E∗(X,A). These maps will be

our ring multiplications and monoid actions. Note also that this definition does not
directly extend to spectra as there is no obvious “diagonal”.

Remark 2.13. If we denote by X
πX←−− X × Y πY−−→ Y the projections, then we have

commuting diagrams

Ep(X,A)⊗ F q(Y,B) (E ∧ F )p+q(X × Y,X ×B ∪A× Y )

Ep(X × Y,A× Y )⊗ F q(X × Y,X ×B)

∧̄

π∗X⊗π
∗
Y

^

Ep(X,A)⊗ Fq(X × Y,A× Y ∪X ×B) (E ∧ F )−p+q(Y,B)

Ep(X × Y,A× Y )⊗ Fq(X × Y,A× Y ∪X ×B) (E ∧ F )−p+q(X × Y,X ×B)

\

π∗X⊗1

_

(πY )∗

so in particular (at least in the relative case) the products ∧̄, \ can be recovered
from the cup and cap products.

We will deduce the validity of the ring multiplication and module action axioms
from general properties of the four “multiplications” we have defined. They satisfy
a wide range of associativity relations, reminiscent of various rules for “cancelling
fractions”.

Proposition 2.14. For spectra E,F,G,X, Y, Z, we have:

(1) For u ∈ Ep(X), v ∈ F q(Y ), w ∈ Gp(Z)

(u∧̄v)∧̄w = u∧̄(v∧̄w) ∈ (E ∧ F ∧G)p+q+r(X ∧ Y ∧ Z)

(2) For y ∈ Ep(Y ), x ∈ F q(X), t ∈ Gr(X ∧ Y ∧ Z)

y\(x\t) = (c∗(y∧x))\t ∈ (E ∧ F ∧G)−p−q+r(Z)

(3) For u ∈ Ep(X), v ∈ Fq(Y ), w ∈ Gp(Z)

(u∧v)∧w = u∧(v∧w) ∈ (E ∧ F ∧G)p+q+r(X ∧ Y ∧ Z)

(4) For x ∈ Ep(X), u ∈ F q(Y ∧ Z), z ∈ Gr(Z)

x∧̄(u/z) = (x∧̄u)/z ∈ (E ∧ F ∧G)p+q−r(X ∧ Y )

(5) For v ∈ Ep(X ∧ Z), y ∈ F q(Y ), u ∈ Gr(Y ∧ Z)

v/(y\u) = ((1 ∧ c)∗(v∧̄y))/y ∈ (E ∧ F ∧G)p+q−r(X)

(6) For t ∈ Ep(X ∧ Y ∧ Z), z ∈ F q(Z), y ∈ Gr(Y )

(t/z)/y = t/(c∗(z∧y)) ∈ (E ∧ F ∧G)p−q−r

(7) For w ∈ Ep(X ∧ Y ), y ∈ Fq(Y ), v ∈ Gr(X ∧ Z)

(w/y)\v = w\((c ∧ 1)∗(y∧v)) ∈ (E ∧ F ∧G)−p+q+r(Z)

(8) For x ∈ Ep(X), w ∈ Fq(X ∧ Y ), z ∈ Gz(Z)

(x\w)∧Z = x\(w∧Z) ∈ (E ∧ F ∧G)−p+q+r(Y ∧ Z)
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Remark 2.15. When we extend this using pairings of spectra, we get similar equal-
ities as long as we use pairings such that

E ∧ F ∧G H ∧G

E ∧K L

(so that the statement even makes sense) such as with a (commutative) ring spec-
trum.

We will primarily be interested in the first two properties. The first shows that
the cup product is an associative multiplication on E∗(X) as well as an associative
action on E∗(X,A). The second will show that the cap product is an associative
action of E∗(X) on E∗(X,A).

Proposition 2.16. We have the following relations on relative groups obtained
from the associativity relations for the external and slant products.

(1) For x ∈ E∗(X,A), y ∈ F ∗(X,B), z ∈ G∗(X,C) we have

(x ^ y) ^ z = x ^ (y ^ z) ∈ (E ∧ F ∧G)∗(X,A ∪B ∪ C)

(2) For x ∈ E∗(X,A), y ∈ F ∗(X,B), z ∈ G∗(X,A ∪B ∪ C) we have

(x ^ y) _ z = x _ (y _ z) ∈ (E ∧ F ∧G)∗(X,C)

Thus in particular the multiplication on E∗(X) and the E∗(X)-actions on E∗(X,A)
and E∗(X,A) satisfy the corresponding associativity/distributivity properties.

Proof. The proofs are mostly symbolic consequences of the associativity relations.
For instance for (2) we have

x _ (y _ z) := x\δ∗(y _ z) = x\(δ∗(y\δ∗z))
by unraveling definitions and by our functoriality observations we may rewrite this
as

x\(δ∗(y\δ∗z)) = x\(y\((1× δ)∗δ∗z)) = c∗(x∧̄y)\(δ × 1)∗δ∗z = δ∗c∗(x∧̄y)\δ∗z
with the middle equality being part (2) of the result for exterior products. But
cδ = δ so this is simply

δ∗(x∧̄y)\δ∗z =: (x ^ y) _ z

�

Definition 2.17. For a ring spectrum (E,µ, ι), set for a space X

1: Σ∞X+
∼= (Σ∞X+) ∧ S Σ∞p+∧ι−−−−−→ S ∧ E ∼= E

where p is the unique X+ → ∗. This defines 1 ∈ E0(X).

Lemma 2.18. For x ∈ En(X,A), y ∈ Em(Y,B) we have π∗X(x) = x∧̄1 and
π∗Y (y) = 1∧̄y where X ← X × Y → Y are the projections. (note that the 1 in
x∧̄1 is 1 ∈ E0(Y ) and the one in 1∧̄y is 1 ∈ E0(X))

Corollary 2.19. 1 ^ x = x = x ^ 1 and 1 _ y = y for x ∈ E∗(X,A), y ∈
E∗(Y,B). That is, both satisfy the required unitality properties.

It remains only to address graded commutativity of E∗(X). Ultimately this will
follow from the compatibility of ∧̄ with the twist maps.
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Proposition 2.20. We have for spectra E,F,X, Y the following commutative di-
agrams (up to the displayed sign (−1)pq)

Ep(X)⊗ F q(Y ) F q(Y )⊗ Ep(X)

(E ∧ F )p+q(X ∧ Y ) (−1)pq (F ∧ E)p+q(Y ∧X)

(E ∧ F )p+q(Y ∧X)

'

(cEF )∗c∗Y X

∧̄ ∧̄

Ep(X)⊗ Fq(Y ) Fq(Y )⊗ Ep(X)

(−1)pq

(E ∧ F )p+q(X ∧ Y ) (F ∧ E)p+q(Y ∧X)

'

∧ ∧

(cEF∧cXY )∗

Consequently, extending the two exterior products using pairings E∧F → G and
F ∧ E → G such that

E ∧ F F ∧ E

G

c

(for instance the multiplication µ : E ∧ E → E of a commutative ring spectrum)
we have for x ∈ Ep(X), y ∈ F q(Y ), x∧̄y = (−1)pqy∧̄x ∈ Gp+q(X ∧ Y ). Thus in
particular E∗(X) is indeed graded commutative, as desired.

Proof. [Switzer, Prop 13.53] sketches a proof for the case of homology, so we sketch
a proof for the case of cohomology (which is the case we use). For this we chase a
simple tensor x ⊗ y, for x ∈ Ep(X) ∼= [X,Sp ∧ E], y ∈ F q(Y ) ∼= [Y,Sq ∧ F ]. The
result follows from the commutativity of the diagram

Y ∧X Sq ∧ F ∧ Sp ∧ E Sq ∧ Sp ∧ F ∧ E Sp+q ∧ F ∧ E

X ∧ Y Sp ∧ E ∧ Sq ∧ F Sp ∧ Sq ∧ E ∧ F Sp+q ∧ E ∧ F

y∧x 1∧c∧1 '

x∧y

c

1∧c∧1

cSp∧E,Sq∧F

'

c∧c (−1)pq∧c

where the first two squares commute purely by the symmetric monoidality of ∧ and
the final square due to the fact that

Sq ∧ Sp Sp+q

Sp ∧ Sq Sp+q

'

'

c (−1)pq

�
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