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1. Homology and Cohomology in a Model Category

Classically, for an abelian categoryA one defines the homology functors Ch≥0(A)
Hn−−→ A

by a “Kernel/Image” construction.

Proposition 1.1. (Dold-Kan) For a commutative ring R, there is an equivalence of
categories sModR ' Ch≥0(R).

The idea is to use the category of simplicial objects sC as a replacement for Ch≥0(C),
as it makes sense for any category.

Definition 1.2. The data of an abelian object in a category C is that of an object
a and the structure of a functorial abelian group structure on HC(a), that is a lift of
C(−, a) : Cop → Set to Ab. When C has finite limits, this is equivalent by the H-lemma

to morphisms ∗ 0−→ a, a× a m−→ a and a
i−→ a making the diagrams encoding associativity,

unitality and inverses commute.
We will denote by Cab the subcategory of Fun(Cop,Ab) spanned by the abelian group

objects HC(a).

Assumption 1.3. We will assume that the faithful map Cab
U−→ C has a left adjoint, called

“abelianisation” (denoted Ab) and further that C and Cab are given model structures
making this into a Quillen adjunction.

Remark 1.4. As model categories have (finite) limits, one can check (using the fact that
products in the category are products in the homotopy category and so on) that an abelian
object in a model category is naturally an abelian object in its homotopy category.

Definition 1.5. We define the Quillen homology to be the left derived functor LAb
(left adjoint to the right derived functor RU) of the abelianisation functor. This yields
a functor ho C → ho Cab. We may further define the n-th Quillen homology groups by
taking πn of the Quillen homology.

Observation 1.6. Cab is pointed (the unique morphism from the terminal HC(∗) to any
other abelian object is the identity of the group structure), so there are suspension and
loop operators Σ,Ω on ho Cab.

Assumption 1.7. Assume that the unit 1
η−→ ΩΣ is an isomorphism.

Definition 1.8. For an object A of Cab we define the p-th Quillen cohomology functor
with coefficients in A by Hp(X;A) = [LAb(−),Ωp+nΣn], for n ≥ 0 chosen such that
p+ n ≥ 0. This is well defined by the preceding assumption.

Assumption 1.9. Assume that C is pointed. Thus ho C has its own suspension and loop
operators as well.
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Proposition 1.10. The left derived functor LAb commutes with suspension (and dually,
the right derived functor RU commutes with looping).

Corollary 1.11. We have natural suspension isomorphisms Hn(ΣX;A) ∼= Hn+1(X;A).

Remark 1.12. Recall that in a pointed model category, the representable functors on the
homotopy category produce from a cofibre sequence a long exact sequence. Consequently,
we have a long exact sequence in cohomology associated to a cofibre sequence.

Motivated by this, we call an object in the essential image of RU a generalised Eilenberg-
Maclane object, as it and its loopings represent a series of functors that resembles a
cohomology theory in the sense of Eilenberg-Steenrod.

2. Examples of Quillen Homology

2.1. Singular Homology. Setab = Ab and the abelianisation is given by the free abelian
group functor Z⊕(−) : Set→ Ab. Passing to simplicial objects, we have the abelianisation
Z⊕(−) : sSet→ sAb = (sSet)ab

As every simplicial set is cofibrant, we can compute it as LAb(X) = Z⊕X . On the
singular complex of a space Sing(X), this simply computes the singular homology as
πnLAb Sing(X) = πnZ⊕ Sing(X) ∼= Hn(X;Z). (The last identification is because under the
Dold-Kan correspondence, homotopy corresponds to homology)

2.2. Group Homology. We have Grpab = Ab as well, with the abelianisation being given

by the assignment X 7→ X�[X,X]. Thus we have an abelianisation LAb : sGrp → sAb

computed as LAb(G) = X�[X,X] (levelwise quotient) where X
∼−→ G is a cofibrant

replacement.
Recall that the group homology of G is defined as Hn(BG) = TorZ[G]

n (Z,Z). One can
compute this in terms of the Quillen Homology of G thought of as a constant object in
sGrp. To be precise, one obtains through a spectral sequence argument upon considering
the two canonical filtrations of Z⊕BG that there is a canonical πnLAb(G) ∼= Hn+1(BG)
for each n.

2.3. André-Quillen Homology. For a commutative ring R and a commutative R-
algebra A, the abelian objects in CAlgR/A can be identified with A-modules. Moreover,
the hom objects in the adjunction bijection can be naturally identified with the values
of the R-derivations functor. The associated Quillen homology, called André-Quillen
Homology can be used to study the derived functors of R-derivations and is one of the
first major applications of model categorical methods.

Definition 2.1. For an A ∈ CAlgR and M ∈ ModA, we let A nM be the A-module
A⊕M with a multiplication being given by (a,m) · (a′,m′) = (aa′, am′+ a′m). Inclusion
onto the A component makes it an A-algebra (and hence R-algebra) and projection onto
the first makes it an object of CAlgR/A.

Proposition 2.2. Projection to the second component defines an isomorphism (functo-
rially in X,M) CAlgR/A(X,AnM) ∼= DerR(X,M). In particular, AnM is an abelian
object.

Proposition 2.3. The functor A n (−) defines an equivalence ModA
∼−→ (CAlgR/A)ab.

Hence we also have an equivalence sModA ' (sCAlgR/A).

Definition 2.4. For A ∈ CAlgR, let I be the kernel of the multiplication A ⊗R A → A.

Then we define ΩA/R := I�I2 to be the module of (Kähler) differentials. There is a
canonical map d : A→ ΩA/R acting as a 7→ a⊗ 1− 1⊗ a.
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Proposition 2.5. Pulling back along d induces a natural ModA(ΩA/R,−) ∼= DerR(A,−).
Thus, we have a chain of natural isomorphisms

ModA(A⊗X ΩX/R,M) ∼= ModX(ΩX/R,M) ∼= DerR(X,M) ∼= CAlgR/A(X,AnM)

Corollary 2.6. The adjunction A⊗(−) Ω(−)/R a An (−) is an abelianisation adjunction.
(It is Quillen as the right adjoint An (−) preserves weak equivalences and fibrations)

Definition 2.7. For A ∈ CAlgR, we call LA/R := LAb(A) the cotangent complex of A
and define the André-Quillen Homology functor with coefficients in an A-module M to

be Dn

(
A�R;M

)
(−) := πn(LAb(−)⊗LAM).

Observation 2.8. One observes that the associated Quillen cohomology groups in the

sense of the first section can be described as Dn
(
A�R;M

)
(−) ∼= [−, AnK(M,n)],

where K(M,n) can also be described as the simplicial A-module corresponding to the
chain complex of A-modules which is M in degree n and zero elsewhere.

3. Resolution Model Categories

The category of simplicial objects in a model category can always be endowed with the
Reedy model structure, but in practice one may desire a perturbation of this structure.
For instance, cofibrant replacements often play the role of “resolutions”, and one would
like these resolutions to be built out of certain predetermined “projectives”.

Furthermore, one constructs certain weak equivalence invariants (for instance, many
spectral sequences) and we would like these invariants to be more complete, for instance
to detect weak equivalences. These can be thought of as the Reedy structure having too
many cofibrant objects and not enough weak equivalences.

Assumption 3.1. We will work in a pointed simplicial model category sC.

Remark 3.2. We will identify an object of C with the corresponding constant object of
sC.

Definitions 3.3. The data of a cogroup object in a category C is that of an object a and

the structure of a functorial group structure on H
C
(a), that is a lift of C(a,−) : C → Set

to Grp. Again, when C has finite coproducts this structure can be internalised to that of
a collection of morphisms of C such that the appropriate diagrams commute.

A homotopy cogroup object in a model category is a cofibrant object and the structure
of a cogroup object on that object in the homotopy category.

When the model category is pointed, we will call a collection of homotopy cogroup
objects closed under finite coproducts and suspensions a class of projectives.

Example 3.4. In the pointed simplicial model category sModR, every cofibrant object
is canonically a homotopy cogroup object. Important in practice is the canonical set of
projectives given by finite sums of objects of the form ΣnR.

Definitions 3.5. Consider a pointed simplicial model category C and P a set of projec-
tives in it. Then:

• Call a morphism X → Y in ho C a P-epi if for every P ∈ P , the induced map
[P,X]→ [P, Y ] is a surjection.
• Call an object A of C P-proj if for each P-epi X → Y , the induced map [A,X]→

[A, Y ] is a surjection.
• Call a morphism A→ B in C a P-proj cofibration if it has the left lifting property

with fibrations of C that are also P-epi.
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Remarks 3.6. We have immediately that (note that we assumed homotopy cogroup ob-
jects to be cofibrant)

• The classes P-epi and P-proj determine each other.
• Every element of P is P-proj.
• P-proj is closed under arbitrary coproducts.

Lemma 3.7. Given a class of projectives, ho C has enough projectives, that is every object
X is the target of a P-epi Y → X with Y P-proj.

One can construct such a map by considering Y :=
∐

P∈P
∐

P→X P and defining the
map by taking the restriction to a component to be its index.

Definition 3.8. Call a morphism X → Y in C P-free if it factors as X → X
∐
F → Y

where F is cofibrant and P-projective, and the second map is a trivial cofibration. (the
first map is the component inclusion)

Proposition 3.9. A morphism in C is a P-projective cofibration if and only if it is a
retract of a P-free map.

Definitions 3.10. Consider a pointed simplicial model category C, a class of projectives
P and a morphism f : X → Y in sC. Then we say that:

• f is a P-eq if for all P ∈ P , the induced [P,X]→ [P, Y ] is a weak equivalence of
simplicial groups, or equivalently a levelwise weak equivalence.
• f is a P-fibration if it is a Reedy fibration, and further the induced map [P,X]→

[P, Y ] is a fibration of simplicial groups.
• f is a P-cofibration if the relative latching maps Xn

∐
LnX

LnY → Yn are all
P-projective cofibrations.

Remarks 3.11. Every Reedy weak equivalence is a levelwise weak equivalence, so they
introduce isomorphisms on the hom objects of the homotopy category, and are thus all
P-eqs.

Further, every P-cofibration is necessarily a Reedy cofibration. Also, an object is
P-fibrant if and only if it is Reedy fibrant.

Theorem 3.12. For a pointed simplicial model category C and a class of projectives P,
the P-eqs, P-fibrations and the P-cofibrations are the weak equivalences, fibrations and
cofibrations respectively of a (simplicial) model structure on sC, called the P-resolution
model structure.

Furthermore, this is cofibrantly generated if C is.

Example 3.13. In the category CGH∗ of pointed compactly generated Hausdorff spaces,
every suspension is a homotopy cogroup object via the pinch map. Of particular interest
is that class of projectives generated by an object X, that is the class of finite wedges of
suspensions ΣnX. The prototypical example is when X is S0, that is the class of finite
wedges of spheres.

In this case, a cofibrant replacement Y → X can be thought of as a “resolution by
spheres”. In particular, passing to the realisation, the induced |Y | → X defines a weak
equivalence of |Y | onto the connected component of X containing the basepoint. (so if

X is connected, we get |Y | ∼−→ X)
If for instance we used instead X := Sk, to only consider spheres of dimension at

least that k, the so constructed |Y | would model instead the (k − 1)-connected cover or
k-coskeleton of X.
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